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Brief Overview

● In this work, we introduce a novel sequence modeling approach called TaLK convolutions that 

is not based on self-attention.

● Experiments on machine translation, abstractive summarization and language modeling 

suggest that this method can yield comparative results with other self-attention and 

convolution based competitive methods.

● The proposed method has           time complexity and it uses an adaptive summation 

convolution kernel.
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Introduction

● Sequence modeling is a fundamental task in ML

● Many applications such as machine translation, POS tagging, sentiment classification, 

video processing, time-series etc.

[Karpathy, 2015]

● It's the process of learning how to combine timesteps to form representations of higher 

abstraction.
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Sequence Modeling Approaches
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Motivation

Currently, self-attention is considered vital for modern sequence learning approaches.

● Self-attention is expensive. It has quadratic time complexity.

● Hard to be deployed on devices with limited hardware (i.e. edge devices)

● Dynamic Convolutions [Wu et al. 2019] showed that you can achieve good results using a 

limited context window.

● Still relies on a special type of attention (i.e. dynamic value-based attention)
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Research Questions

● Q1: Is (self-)attention critical to get good performance?

● Q2: Can we reduce the time-complexity to           using a parallelizable non-autoregressive 

method?
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One-dimensional Large Kernel Convolution

● One of the simplest ways to model a sequence of representations is to aggregate the 

appropriate number of vector representations together.

where                              are the left and right offsets (boundaries).
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One-dimensional Large Kernel Convolution
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Summed-area Table

● To address this issue we can use the summed-area table (integral image operation).

● Let                                        be the summed-area table computed using

● Given the left        and right        offsets, we can compute       using the summed-area table in    

time: 

● Applying the previous aggregation can be slow because we compute the same aggregations 

again and again.

● The above operation can be efficiently parallelized with complexity                using the parallel 

prefix sum algorithm. 
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Time-aware Large Kernel Generation

● So far, we assumed that       and       are given. 

● Ideally, we want to learn to generate these offsets for each input timestep.

● We can’t directly predict the index which corresponds to the offset word:

● Indexes are positive unbounded integers; 

● We address this issue using relative offsets.

● We generate these relative offsets using

where 
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Offsets Interpolation

● Convert the relative offsets to absolute by using

● We can’t directly use the absolute indexes because they are real values.

● We use linear interpolation to approximately generate            and         directly: 

where                                  are the maximum allowed tokens to the left and to the right.
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Output Normalization

● The proposed method works well when used with shallow models.

● Aggregating many representations together can lead to disproportional magnitude on the 

representation values passed to the next layers.

● Solution: Normalize by the maximum window length

● To further increase the performance, we apply dropout to the generated relative offsets

● Set relative offset to zero which effectively cancels the expansion of the window towards that 

direction.

● Forcing the model to produce smaller windows to robustify the importance of the number of 

tokens that are needed to model a timestep.
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Multi-headed Kernels

● Similar to MHSA, we introduce multiple heads.

● We tie every subsequent number of                 channels together and group the channels into      

groups.

where                                    .

● This helps to further increase the expressivity and diversity of the representation of each 

timestep.
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The TaLK Convolution Operation
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Architecture & Implementation

● We implemented our own CUDA primitives to support the TaLK Convolution operation.
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Computational Complexity
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Machine Translation
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Abstractive Summarization & Language Modeling
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Model Ablation
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Encoding Inference Speed Comparison
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Conclusion

● We introduced a new way of doing sequence modeling that has           time complexity.

● The results show that the proposed method can perform on par with transformers and dynamic 

convolutions without using self-attention or a variant of it.

● In the future, we will do more research on how to apply TaLK Convolutions in a non-contiguous 

way.

github.com/lioutasb/TaLKConvolutions

Thank you!
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https://github.com/lioutasb/TaLKConvolutions

