
Time-aware Large Kernel

Convolutions
Vasileios Lioutas and Yuhong Guo

ICML | 2020

Brief Overview

● In this work, we introduce a novel sequence modeling approach called TaLK convolutions that

is not based on self-attention.

● Experiments on machine translation, abstractive summarization and language modeling

suggest that this method can yield comparative results with other self-attention and

convolution based competitive methods.

● The proposed method has time complexity and it uses an adaptive summation

convolution kernel.

ICML | 2020

Introduction

● Sequence modeling is a fundamental task in ML

● Many applications such as machine translation, POS tagging, sentiment classification,

video processing, time-series etc.

[Karpathy, 2015]

● It's the process of learning how to combine timesteps to form representations of higher

abstraction.

ICML | 2020

Sequence Modeling Approaches
ICML | 2020

Sequence Modeling Approaches
ICML | 2020

Sequence Modeling Approaches
ICML | 2020

Comparison
ICML | 2020

Motivation

Currently, self-attention is considered vital for modern sequence learning approaches.

● Self-attention is expensive. It has quadratic time complexity.

● Hard to be deployed on devices with limited hardware (i.e. edge devices)

● Dynamic Convolutions [Wu et al. 2019] showed that you can achieve good results using a

limited context window.

● Still relies on a special type of attention (i.e. dynamic value-based attention)

ICML | 2020

Research Questions

● Q1: Is (self-)attention critical to get good performance?

● Q2: Can we reduce the time-complexity to using a parallelizable non-autoregressive

method?

ICML | 2020

One-dimensional Large Kernel Convolution

● One of the simplest ways to model a sequence of representations is to aggregate the

appropriate number of vector representations together.

where are the left and right offsets (boundaries).

ICML | 2020

One-dimensional Large Kernel Convolution
ICML | 2020

Summed-area Table

● To address this issue we can use the summed-area table (integral image operation).

● Let be the summed-area table computed using

● Given the left and right offsets, we can compute using the summed-area table in

time:

● Applying the previous aggregation can be slow because we compute the same aggregations

again and again.

● The above operation can be efficiently parallelized with complexity using the parallel

prefix sum algorithm.

ICML | 2020

Time-aware Large Kernel Generation

● So far, we assumed that and are given.

● Ideally, we want to learn to generate these offsets for each input timestep.

● We can’t directly predict the index which corresponds to the offset word:

● Indexes are positive unbounded integers;

● We address this issue using relative offsets.

● We generate these relative offsets using

where

ICML | 2020

Offsets Interpolation

● Convert the relative offsets to absolute by using

● We can’t directly use the absolute indexes because they are real values.

● We use linear interpolation to approximately generate and directly:

where are the maximum allowed tokens to the left and to the right.

ICML | 2020

Output Normalization

● The proposed method works well when used with shallow models.

● Aggregating many representations together can lead to disproportional magnitude on the

representation values passed to the next layers.

● Solution: Normalize by the maximum window length

● To further increase the performance, we apply dropout to the generated relative offsets

● Set relative offset to zero which effectively cancels the expansion of the window towards that

direction.

● Forcing the model to produce smaller windows to robustify the importance of the number of

tokens that are needed to model a timestep.

ICML | 2020

Multi-headed Kernels

● Similar to MHSA, we introduce multiple heads.

● We tie every subsequent number of channels together and group the channels into

groups.

where .

● This helps to further increase the expressivity and diversity of the representation of each

timestep.

ICML | 2020

The TaLK Convolution Operation
ICML | 2020

Architecture & Implementation

● We implemented our own CUDA primitives to support the TaLK Convolution operation.

ICML | 2020

Computational Complexity
ICML | 2020

Machine Translation
ICML | 2020

Abstractive Summarization & Language Modeling
ICML | 2020

Model Ablation
ICML | 2020

Encoding Inference Speed Comparison
ICML | 2020

Conclusion

● We introduced a new way of doing sequence modeling that has time complexity.

● The results show that the proposed method can perform on par with transformers and dynamic

convolutions without using self-attention or a variant of it.

● In the future, we will do more research on how to apply TaLK Convolutions in a non-contiguous

way.

github.com/lioutasb/TaLKConvolutions

Thank you!

ICML | 2020

https://github.com/lioutasb/TaLKConvolutions

