ICML | 2020

Time-aware Large Kernel
Convolutions

Vasileios Lioutas and Yuhong Guo

IIIIIIIIII

ICML | 2020

Brief Overview

e In this work, we introduce a novel sequence modeling approach called TaLK convolutions that
Is not based on self-attention.

e The proposed method has O(n) time complexity and it uses an adaptive summation
convolution kernel. 04

o= oh =]

Head 2 mm e e e Xrp o X3 Ty T Tg L7

!

Current Timestep

e Experiments on machine translation, abstractive summarization and language modeling
suggest that this method can yield comparative results with other self-attention and
convolution based competitive methods. & Carleton

UNIVERSITY

ICML | 2020

Introduction

e Sequence modeling is a fundamental task in ML
e It's the process of learning how to combine timesteps to form representations of higher

abstraction.
[Karpathy, 2015]
one to many many to one many to many many to many
Words in 1] [] Classof [| Words in Hindi— BEE 11 [] Labelsof
Image caption the doc. Translation each frame
A AT A b g T Y AR AT AT
S N o I N i N
t bt ¢t , t ¢ |
[m B N 1 1] Wordsin] 1] Framesin
Image Words in an English avideo
|| adoc. | || || | N sentence L L L

e Many applications such as machine translation, POS tagging, sentiment classification,

video processing, time-series etc. Carleton

UNIVERSITY

ICML | 2020

Sequence Modeling Approaches

RNNs

he = f(xg, hi—1)

® 0
0 0 -

ry T2 I3 T4 Xp

ICML | 2020

Sequence Modeling Approaches

CNNs
he = f(@e—kj2)s s Tt k/2)+k)
h3
P XX XK
o o o o
® o o o
® o o @

Sequence Modeling Approaches

ICML | 2020

Self-Attention

h3
T ==
o o o o
® o o o
® o o ®

ICML | 2020

Comparison

RNNs CNNs Self-Attention

Parallel Q °
Infinite Context ° 0

Time Complexity O(n) O(k-n)
R S SR
} A } } A P XA X T XY
o ® O ® ® o o o
o ® O o o o ® o
o o o o o o o o o o
L1 €I T3 T4 Iy X1 €Z9 xZrs3 L4 5

& Carleton

UNIVER SITY

ICML | 2020

Motivation

Currently, self-attention is considered vital for modern sequence learning approaches.
e Self-attention is expensive. It has quadratic time complexity.
e Hard to be deployed on devices with limited hardware (i.e. edge devices)

e Dynamic Convolutions [Wu et al. 2019] showed that you can achieve good results using a
limited context window.

e Still relies on a special type of attention (i.e. dynamic value-based attention)

IIIIIIIII

ICML | 2020

Research Questions

e Q1: Is (self-)attention critical to get good performance?

e Q2: Can we reduce the time-complexity to O(n) using a parallelizable non-autoregressive
method?

IIIIIIIII

ICML | 2020

One-dimensional Large Kernel Convolution

e One of the simplest ways to model a sequence of representations is to aggregate the
appropriate number of vector representations together.

a;
0; — E Zl?j,
j=a!

where 1 <ol <i<al<n are the left and right offsets (boundaries).

IIIIIIIII

ICML | 2020

One-dimensional Large Kernel Convolution

04

A
Z

ol = 3 IIII ol = 6

T1 T2 T3 :1:4 T5 Tg T7

3
|

= Carleton

IIIIIIIIII

Current Timestep

ICML | 2020

Summed-area Table

e Applying the previous aggregation can be slow because we compute the same aggregations
again and again.

e To address this issue we can use the summed-area table (integral image operation).

o Let §={5,51,5,..., S, } be the summed-area table computed using

? ¥

So =0,
Si=8_1+z;, 1<i<n.

e The above operation can be efficiently parallelized with complexity O(logn) using the parallel
prefix sum algorithm.

e Given the left (o!) and right (a!) offsets, we can compute O; using the summed-area table in O(1)
time:

0; = Sar — 5411

IIIIIIIII

ICML | 2020

Time-aware Large Kernel Generation

e So far, we assumed that ozé and «; are given.

e |deally, we want to learn to generate these offsets for each input timestep.
e We can't directly predict the index which corresponds to the offset word:
e Indexes are positive unbounded integers; i € [1, V]

e We address this issue using relative offsets.

e \We generate these relative offsets using
{1,
al'" = o (F1H (@) € [0,1]

where fit7} . R 5 R

IIIIIIIII

ICML | 2020

Offsets Interpolation

e Convert the relative offsets to absolute by using

[_ - ~|
a;, =1 — a; * lmax

T : ~T
a;, =1+ a; - Tmax

where {lmax, "max } € Z>0 are the maximum allowed tokens to the left and to the right.

e We can’t directly use the absolute indexes because they are real values.

e We use linear interpolation to approximately generate Sa;_l and 3(1; directly:

Sa,,i-—l - ’YZ ’ Safb-—l + (1 o ’}/l) ’ Saﬁ—l
Saf{ - (1 - W/T) ’ Sa: +7T ’ Sa;-"

IIIIIIIII

ICML | 2020

Output Normalization

e The proposed method works well when used with shallow models.

e Aggregating many representations together can lead to disproportional magnitude on the
representation values passed to the next layers.

e Solution: Normalize by the maximum window length

. 1
oo (lmax + Tmax 1 1)

e To further increase the performance, we apply dropout to the generated relative offsets a

{Lr}

1

e Set relative offset to zero which effectively cancels the expansion of the window towards that
direction.

e [orcing the model to produce smaller windows to robustify the importance of the number of
tokens that are needed to model a timestep.

IIIIIIIII

ICML | 2020

Multi-headed Kernels

e Similar to MHSA, we introduce multiple heads.

: d :
e We tie every subsequent number of R = T channels together and group the channels into H
groups.

&'t = (10 @) € o0.1)"

where f{l,?"} : RHXR N RH

e This helps to further increase the expressivity and diversity of the representation of each
timestep.

IIIIIIIII

ICML | 2020

The TaLK Convolution Operation

04

}
D

vy = [3.0} I I 0y = [4_2}

Head 2 ~mme e 4 Il X9 I3 T4 ¥y Tg L7

T

Current Timestep ' UNIVERSITY

ICML | 2020

Architecture & Implementation

(Linear)
left and rightl

N offsets generation
(TaLK Conv) |

("Sigmoid)
(Lin:aar)
(GLU) '

Input

e We implemented our own CUDA primitives to support the TaLK Convolution operation.

IIIIIIIIII

ICML | 2020

Computational Complexity

Table 4.1: Maximum path lengths, per-layer complexity and minimum number of
sequential operations for different layer types. n is the sequence length, d is the
representation dimension and k is the kernel size of convolutions.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations
Recurrent [8] O(n - d?) O(n) O(n)
lutional -
Convolutiona Ok -n-d?*) O(1) O(logi(n)) or O(n/k)
[11,21]
Self-Attention [13] O(n? - d) O(1) 0(1)
Dynamic Convolutions [12] O(k-n-d) 0(1) O(n/k)
TaLK Convolutions (Ours) O(n - d) O(log(n)) On/(lmax + Tmax + 1))

IIIIIIIII

ICML | 2020

Machine Translation

Table 2. Machine translation accuracy in terms of BLEU for WMT En-De and WMT En-Fr on newstest2014.

Model Param (En-De) WMT En-De WMT En-Fr
Gehring et al. (2017) 216M 25.2 40.5
Vaswani et al. (2017) 213M 28.4 41.0
Ahmed et al. (2017) 213M 28.9 414
Chen et al. (2018) 379M 28.5 41.0
Shaw et al. (2018) - 29.2 41.5
Ottet al. (2018) 210M 29.3 43.2
Wu et al. (2019) 213M 29.7 43.2
TaLLK Convolution (Ours) 209M 290.6 43.2

Table 3. Machine translation accuracy in terms of BLEU on

IWSLT De-En.
Model Param IWSLT De-En
Deng et al. (2018) - 33.1
Vaswani et al. (2017) 47TM 34.4
Wu et al. (2019) 43M 35.2
TaLLK Convolution (Ours) 42M 35.5

Carleton

UNIVERSITY

ICML | 2020

Abstractive Summarization & Language Modeling

Table 4. Results on CNN-DailyMail abstractive summarization.

Model Param Rouge-1 Rouge-2 Rouge-L
LSTM (Paulus et al., 2018) - 38.30 14.81 35.49
CNN (Fan et al., 2018) - 39.06 15.38 35.77
Self-Attention Baseline (Wu et al., 2019) 90M 39.26 15.98 36.35
Lightweight Convolution (Wu et al., 2019) 86M 39.52 15.97 36.51
Dynamic Convolution (Wu et al., 2019) 8™ 39.84 16.25 36.73
TaLLK Convolution (Standard) 59M 40.03 18.45 36.13
TaLLK Convolution (Deep) 83M 40.59 18.97 36.81

Table 5. Test perplexity on WikiText-103.

Param Test

Grave et al. (2017) - 40.8
Dauphin et al. (2017) 229M 372
Merity et al. (2018) I5IM 33.0

Rae et al. (2018) - 29.2
Baevski & Auli (2019) 247TM 20.5
Dynamic Convolution 255M 250

TaLK Convolution (Ours) 240M 23.3

Carleton

UNIVERSITY

Model Ablation

ICML | 2020

Table 7. Ablation on IWSLT De-En validation set. (+) indicates that a result includes all preceding features.

Model Param BLEU
TaLK Convolution (al, af=1x7, H=1) 42M diverges
+ Output Normalization 42M 35.70 £ 0.1
+ Increasing Max Offsets (af,g, a;=1,3,7,15x4) 42M 36.23 £+ 0.1
+ Offsets Dropout (p=0.1) 42M 36.37 £ 0.05
+ Fully-headed Kernels (//=512) 47M 36.51 £ 0.07
+ Multi-headed Kernels (H=4) 42M 36.65 + 0.05
+ Replacing Swish with ReLLU 42M 36.21 £ 0.05

IIIIIIIII

ICML | 2020

Encoding Inference Speed Comparison

Table 5.11: Throughput and memory consumption decrease measured for different se-
quence lengths (n) on a batch of size 10 with each token being represented with
d = 1024 and H = 16. Throughput is calculated across 100K iterations of a single
input encoding execution for each method. Memory decrease is computed as how
many times less memory we need to encoding the input embedding compared to
Self-Attention. Larger numbers indicate better performance.

n =10 n =100 n = 1,000 n = 10,000
Method
iter/sec Mem. | | iter/sec Mem. | | iter/sec Mem. | | iter/sec Mem. |
Self-Attention 4576 1x 3437 1x 102 1x OOM 1x
DynamicConv (k = 3) 3739 1x 3308 0.99x 443 2.8x 45 25.4x
DynamicConv (k = 31) | 4535 0.97x 3860 1x 325 2.7x 29 20.2x
TaLLK Convolution 9686 1.1x 6126 1.1x 898 3.1x 92 26.4x

Carleton

UNIVERSITY

ICML | 2020

Conclusion

e We introduced a new way of doing sequence modeling that has O(n) time complexity.

The results show that the proposed method can perform on par with transformers and dynamic
convolutions without using self-attention or a variant of it.

e In the future, we will do more research on how to apply TaLK Convolutions in a non-contiguous
way.

Thank you!

O qgithub.com/lioutasb/TaLKConvolutions

IIIIIIIII

https://github.com/lioutasb/TaLKConvolutions

