
Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix
Chern, Sanjiv Kumar

Overview

https://github.com/google-research/google-research/tree/master/scann

Application: recommender systems

Application: recommender systems

Application: recommender systems

Application: recommender systems

Application: recommender systems

MIPS: partitioning and quantization

Partitioning:
● Split database into disjoint subsets
● Search only the most promising subsets

MIPS: partitioning and quantization

Partitioning:
● Split database into disjoint subsets
● Search only the most promising subsets

Quantization:
● Reduce the number of bits used to describe data

points.
● Leads to smaller index size and faster inner

product calculations.

MIPS: partitioning and quantization

Partitioning:
● Split database into disjoint subsets
● Search only the most promising subsets

Quantization:
● Reduce the number of bits used to describe data

points.
● Leads to smaller index size and faster inner

product calculations.

Quantization overview: codebooks

Given a set of vectors x1, x2, …, xn, we want to create a
quantized dataset x1̃, x2̃, …, xñ.

Quantize to an element of the codebook, Cθ

Example codebook: vector quantization

Parameters are a set of centers c1, c2, …, ck.

Codebook Cθ is the set of all centers: {c1, c2, …, ck}.

Example codebook: vector quantization

Parameters are a set of centers c1, c2, …, ck.

Codebook Cθ is the set of all centers: {c1, c2, …, ck}.

Product quantization:
● splits the space into multiple subspaces
● uses a vector quantization codebook for each subspace.

Quantization basics: assignment

To assign a datapoint to a codeword, we select the
codeword that minimizes a loss function.

Traditional loss function choice

Classic approach: reconstruction error.

Traditional loss function choice

Classic approach: reconstruction error.

By Cauchy-Schwartz:

Some inner product errors are worse than others

Consider a query q and database points x1, … , xn
Rank points by inner product

Some inner product errors are worse than others

Consider a query q and database points x1, … , xn
Rank points by inner product

Some inner product errors are worse than others

Consider a query q and database points x1, … , xn
Rank points by inner product

Low inner
product

High inner
product

a1 a2 a3 a4 a5 … an-

3

an-

2
an-1 an

Some inner product errors are worse than others

Consider a query q and database points x1, … , xn
Rank points by inner product

Low inner
product

High inner
product

a1 a2 a3 a4 a5 … an-

3

an-

2
an-1 an

MIPS Results

Some inner product errors are worse than others

Consider a query q and database points x1, … , xn
Rank points by inner product

Low inner
product

High inner
product

a1 a2 a3 a4 a5 …
an-

3

an-

2
an-1 an

MIPS Results

Perturbations of low
inner products are
unlikely to result in
changes to top-k

Some inner product errors are worse than others

Consider a query q and database points x1, … , xn
Rank points by inner product

Low inner
product

High inner
product

a1 a2 a3 a4 a5 …
an-

3

an-

2
an-1 an

MIPS Results

Perturbations of low
inner products are
unlikely to result in
changes to top-k

Perturbations of high inner
products change top-k and

lead to recall loss

Some inner product errors are worse than others

Consider a query q and database points x1, … , xn
Rank points by inner product

Low inner
product

High inner
product

a1 a2 a3 a4 a5 …
an-

3

an-

2
an-1 an

MIPS Results

Perturbations of low
inner products are
unlikely to result in
changes to top-k

Perturbations of high inner
products change top-k and

lead to recall loss

Takeaway: to maximize
recall, emphasize
reducing quantization
error for high inner
products

Visualization of query distribution

x

Visualization of query distribution

Quantization error: little
impact on MIPS recall

x

Visualization of query distribution

Quantization error: some
impact on MIPS recall

x

Visualization of query distribution

Quantization error: significant
impact on MIPS recall

x

Visualization of query distribution

Quantization error: significant
impact on MIPS recall

x x

Reconstruction loss

Score-aware quantization loss

Traditional quantization loss:

Score-aware loss:

 N

By earlier intuition, w should put more weight on higher .

Example weight function: w(t) = 1(t ≥T).

Evaluating and minimizing score-aware loss

Expand expectation:

Evaluating and minimizing score-aware loss

x

x̃

 r||

error

r⟂

Evaluating and minimizing score-aware loss

Integral evaluates to a weighted sum of r|| and r⟂:

For w that weight higher inner products more,

Visualization of result

c1 gives lower inner product error than c2
even though ||x - c1|| > ||x - c2||

Reason: x - c1 is orthogonal, not parallel, to x

Applications to quantization

Given a family of codewords C, we now want to solve
the following optimization problem.

We work out an approach for efficient approximate
optimization in the large-scale setting for:
1. Vector Quantization
2. Product Quantization

Constant-bitrate comparison

GloVe: 100 dimensions, 1183514 points
Cosine distance dataset; normalize dataset to unit-norm during training time

 25 codebooks, 16 centers each 50 codebooks, 16 centers each

Glove: QPS-recall experiment setup

Higher a, b result in higher recall, lower QPS

Exact re-scoring

Top b inner products
from AH are
re-computed exactly; top
10 are returned as MIPS
results

Pruning via K-means tree

2000 centers; all but the
closest a centers to the
query are pruned

Quantized Scoring

Compute approximate
inner products via with
quantized database
(product quantization
with anisotropic loss)

Glove: QPS-recall pareto frontier

Glove: QPS-recall pareto frontier

Source code: https://github.com/google-research/google-research/tree/master/scann

https://github.com/google-research/google-research/tree/master/scann

