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Overview

Vector quantization optimized for MIPS with a new loss

Open-source implementation (ScaNN) with leading
performance on ann-benchmarks.com
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https://github.com/google-research/google-research/tree/master/scann
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Application: recommender systems

\.

Document Towe

X/
%
‘\

Q

< b"{‘ R

X5
R
R\

Vv

2,

Romeo and Juliet \

“Shakespeare
tragedy”

Pride and Prejudice\

Great Expectations

King Lear

]

)

=

Embedding Space
Romeo and Juliet
@)
@)
King Lear
Pride and Prejudice
@)
@)

Great Expectations

Google Research



Application: recommender systems
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Application: recommender systems
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MIPS: partitioning and quantization

Partitioning:
e Split database into disjoint subsets
e Search only the most promising subsets
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MIPS: partitioning and quantization

Partitioning:
e Split database into disjoint subsets
e Search only the most promising subsets

(Quantization: )
e Reduce the number of bits used to describe data
points.
e |eads to smaller index size and faster inner
product calculations.
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Quantization overview: codebooks

Given a set of vectors x Xor ooy X, WE want to create a

quantized dataset X, X,, ..., X .

Quantize to an element of the codebook, Ce

Google Research



Example codebook: vector quantization

Parameters are a set of centers Bp Cop oo G

Codebook C, is the set of all centers: {C1, @ ooy © 1.
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Example codebook: vector quantization
Parameters are a set of centersc,, c,, ..., C,.

Codebook C, is the set of all centers: {C1, C,p vres ck}.

g

Product quantization:
e splits the space into multiple subspaces

izati le R h
e uses a vector quantization codebook for each subspace. Google Researc



Quantization basics: assignment

To assign a datapoint to a codeword, we select the
codeword that minimizes a loss function.

Z; = arg min L(z;, )
6
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Traditional loss function choice

Classic approach: reconstruction error.

L(x,7) = ||z — &[]
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Traditional loss function choice

Classic approach: reconstruction error.

L(x,7) = ||z — &[]

By Cauchy-Schwartz:

(g, 2) = (g, %))* < |lal*[|x — &[]
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Some inner product errors are worse than others

Consider a query g and database points x,, ..., X
Rank points by inner product

n
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Some inner product errors are worse than others

Consider a query g and database points x,, ..., X
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Some inner product errors are worse than others

Consider a query g and database points x,, ..., X
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Some inner product errors are worse than others

Consider a query g and database points x,, ..., X
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Some inner product errors are worse than others

Consider a query g and database points x,, ..., X
Rank points by inner product MIPS Results

0) < (020 < (@) < o)

2b,
Low inner ngh inner
product product

Takeaway: to maximize

Perturbatlons of low recall, emphasize Perturbat|ons of h|gh inner
inner products are reducing quantization products change top-k and
unlikely to result in error for high inner lead to recall loss

changes to top-k products
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Visualization of query distribution
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Visualization of query distribution
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Visualization of query distribution
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Visualization of query distribution

\
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Visualization of query distribution

\ Reconstruction loss

Quantization error: significant Google Research
impact on MIPS recall



Score-aware quantization loss

o, . ° . & Y ~. 2
Traditional quantization loss: ‘LqNQKq, xz o x2> ]

Score-aware loss: 4:qNQ[w(<Q7 xz>) <q7 Ly — fz>2]

w: R — RT

By earlier intuition, w should put more weight on higher (q, ZUZ>

Example weight function: w(t) = 1(t =T).
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Evaluating and minimizing score-aware loss

2~ olw((a, ) (g, w; — 7))

Expand expectation:

2] |
/ w(O)Eql(a, zi—2)2l{a &3) = dP({g, z;) < 1
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Evaluating and minimizing score-aware loss
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Evaluating and minimizing score-aware loss

2] |
/ w(OEql(a, 2i—20)2/{a i) = dP({g, z;) < 1

=[]

Integral evaluates to a weighted sum of T andr :

~ 1\ |2 ~ V12
hi (i, @) 17 +h, LlIr L (@4, )|
For w that weight higher inner products more, h, | > hi,L
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Visualization of result

A o .
/e C, gives lower inner product error than c,
even though [x - c || > x - c,||

Reason: x - ¢, is orthogonal, not parallel, to x
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Applications to quantization

Given a family of codewords C, we now want to solve
the following optimization problem.

argmin Y min Ay illry (@5, &)1+ 1 llr (5, &)
0 z; z2,€CH

We work out an approach for efficient approximate
optimization in the large-scale setting for:

1. Vector Quantization

2. Product Quantization
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Constant-bitrate comparison

GloVe: 100 dimensions, 1183514 points
Cosine distance dataset; normalize dataset to unit-norm during training time

25 codebooks, 16 centers each 50 codebooks, 16 centers each
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Glove: QPS-recall experiment setup

Pruning via K-means tree

Quantized Scoring Exact re-scoring

2000 centers; all but the Compute approximate Top b inner products

closest a centers to the inner products via with from AH are

query are pruned quantized database re-computed exactly; top
(product quantization 10 are returned as MIPS
with anisotropic loss) results

Higher q, b result in higher recall, lower QPS
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Glove: QPS-recall pareto frontier

Speed (Queries per Second)
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Glove: QPS-recall pareto frontier
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Source code: https://github.com/google-research/google-research/tree/master/scann
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