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Overview

https://github.com/google-research/google-research/tree/master/scann
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Quantization overview: codebooks

Given a set of vectors x1, x2, …, xn, we want to create a 
quantized dataset  x1̃, x2̃, …, xñ.

Quantize to an element of the codebook, Cθ
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Example codebook: vector quantization

Parameters are a set of centers c1, c2, …, ck. 

Codebook Cθ is the set of all centers: {c1, c2, …, ck}.

Product quantization:
● splits the space into multiple subspaces
● uses a vector quantization codebook for each subspace.



Quantization basics: assignment

To assign a datapoint to a codeword, we select the 
codeword that minimizes a loss function.
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Traditional loss function choice

Classic approach: reconstruction error.

By Cauchy-Schwartz:
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MIPS Results

Perturbations of low 
inner products are 
unlikely to result in 
changes to top-k

Perturbations of high inner 
products change top-k and 

lead to recall loss

Takeaway: to maximize 
recall, emphasize 
reducing quantization 
error for high inner 
products



Visualization of query distribution

x



Visualization of query distribution

Quantization error: little 
impact on MIPS recall

x



Visualization of query distribution

Quantization error: some 
impact on MIPS recall

x



Visualization of query distribution

Quantization error: significant 
impact on MIPS recall

x



Visualization of query distribution

Quantization error: significant 
impact on MIPS recall

x x

Reconstruction loss



Score-aware quantization loss

Traditional quantization loss:

Score-aware loss:

                          N        

By earlier intuition, w should put more weight on higher              .

Example weight function: w(t) = 1(t ≥T).



Evaluating and minimizing score-aware loss

Expand expectation:
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Evaluating and minimizing score-aware loss

Integral evaluates to a weighted sum of r|| and r⟂:

For w that weight higher inner products more, 



Visualization of result

c1 gives lower inner product error than c2
even though ||x - c1|| > ||x - c2||

Reason: x - c1 is orthogonal, not parallel, to x



Applications to quantization

Given a family of codewords C, we now want to solve 
the following optimization problem.

We work out an approach for efficient approximate 
optimization in the large-scale setting for:
1. Vector Quantization
2. Product Quantization



Constant-bitrate comparison

GloVe: 100 dimensions, 1183514 points
Cosine distance dataset; normalize dataset to unit-norm during training time

   25 codebooks, 16 centers each                                50 codebooks, 16 centers each



Glove: QPS-recall experiment setup

Higher a, b result in higher recall, lower QPS

Exact re-scoring

Top b inner products 
from AH are 
re-computed exactly; top 
10 are returned as MIPS 
results

Pruning via K-means tree

2000 centers; all but the 
closest a centers to the 
query are pruned

Quantized Scoring

Compute approximate 
inner products via with 
quantized database 
(product quantization 
with anisotropic loss)



Glove: QPS-recall pareto frontier
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Source code: https://github.com/google-research/google-research/tree/master/scann

https://github.com/google-research/google-research/tree/master/scann

