Accelerating Large-Scale
Inference with Anisotropic Vector
Quantization

Ruigi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix
Chern, Sanjiv Kumar

Google Research

Overview

Vector quantization optimized for MIPS with a new loss

Open-source implementation (ScaNN) with leading
performance on ann-benchmarks.com

9000 T T T

annoy —+—
faiss-ivf —x<—
8000 hnsw(faiss) —¥—
hnswlib —H—
mrpt
7000 NGT-panng —&—
NGT-onng —@—
kgraph
6000 hnsw(nmslib) —&—
rpforest ——
SW-graph(nmslib) —¥—
5000 ScaNN —A— |

Speed (Queries per Second)

4000
3000
P —
1000 |- e ¢ o
= X N e K Google Research
0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

Accuracy (Recall@10)

https://github.com/google-research/google-research/tree/master/scann

Application: recommender systems

Romeo and Juliet \

Pride and Prejudice\
Great Expectationsw
King Lear \

“Shakespeare
tragedy”

j Google Research

Application: recommender systems

g
%
2N

>
t.\'
O
>
¥,

()
oA
Y,
RS
19\
ay

Document Tower
_ J

!

Romeo and Juliet \
Pride and Prejudice\

“Shakespeare
tragedy”

Great Expectations

King Lear \

] Google Research

Application: recommender systems

\.

Document Towe

X/
%
‘\

Q

< b"{‘ R

X5
R
R\

Vv

2,

Romeo and Juliet \

“Shakespeare
tragedy”

Pride and Prejudice\

Great Expectations

King Lear

]

)

=

Embedding Space
Romeo and Juliet
@)
@)
King Lear
Pride and Prejudice
@)
@)

Great Expectations

Google Research

Application: recommender systems

Query Tower

_

J

T

“Shakespeare
tragedy”

)

Document Tower

S~

. _J

Romeo and Juliet w

Pride and Prejudice\

Great Expectations\

King Lear

]

=

Embedding Space

Romeo and Juliet

@)
@)

King Lear

Pride and Prejudice

@)

o

Great Expectations

Query: “Shakespeare tragedy”

s00gle Research

Application: recommender systems

_

'\; ’*'f.'*'o‘
D<7 <]
SRR

4

O
\:
W

N\
‘\v:l’.
&

N\

Q)
¢
7

Query Tower

J

(

“Shakespeare
tragedy”

)

Document Tower

. _J

Romeo and Juliet w

Pride and Prejudice\

Great Expectations\

King Lear

]

=

Embedding Space

Romeo and Juliet
@)
© Oa : “Shak t dy”
King Lear uery: “Shakespeare tragedy

s00gle Research

MIPS: partitioning and quantization

Partitioning:
e Split database into disjoint subsets
e Search only the most promising subsets

Google Research

MIPS: partitioning and quantization

Partitioning:
e Split database into disjoint subsets
e Search only the most promising subsets

Quantization:
e Reduce the number of bits used to describe data
points.
e |eads to smaller index size and faster inner
product calculations.

Google Research

MIPS: partitioning and quantization

Partitioning:
e Split database into disjoint subsets
e Search only the most promising subsets

(Quantization:)
e Reduce the number of bits used to describe data
points.
e |eads to smaller index size and faster inner
product calculations.
g J

Google Research

Quantization overview: codebooks

Given a set of vectors x Xor ooy X, WE want to create a

quantized dataset X, X,, ..., X .

Quantize to an element of the codebook, Ce

Google Research

Example codebook: vector quantization

Parameters are a set of centers Bp Cop oo G

Codebook C, is the set of all centers: {C1, @ ooy © 1.

°d
¢

Google Research

Example codebook: vector quantization
Parameters are a set of centersc,, c,, ..., C,.

Codebook C, is the set of all centers: {C1, C,p vres ck}.

g

Product quantization:
e splits the space into multiple subspaces

izati le R h
e uses a vector quantization codebook for each subspace. Google Researc

Quantization basics: assignment

To assign a datapoint to a codeword, we select the
codeword that minimizes a loss function.

Z; = arg min L(z;,)
6

Google Research

Traditional loss function choice

Classic approach: reconstruction error.

L(x,7) = ||z — &[]

Google Research

Traditional loss function choice

Classic approach: reconstruction error.

L(x,7) = ||z — &[]

By Cauchy-Schwartz:

(g, 2) = (g, %))* < |lal*[|x — &[]

Google Research

Some inner product errors are worse than others

Consider a query g and database points x,, ..., X
Rank points by inner product

n

Google Research

Some inner product errors are worse than others

Consider a query g and database points x,, ..., X
Rank points by inner product

(@ Tay) < {q, Tay) < {q Tay) -+ < (q; Tay)

n

Google Research

Some inner product errors are worse than others

Consider a query g and database points x,, ..., X
Rank points by inner product

(@ Tay) < {q, Tay) < {q Tay) -+ < (q; Tay)

n

a1 a2 a3 a4 a5 iy iy an_1 an
- 3 5 >
Low inner High inner
product product

Google Research

Some inner product errors are worse than others

Consider a query g and database points x,, ..., X

n

Rank points by inner product MIPS Results
<Q7 xa1> & <Q7 $a2> < <Q7 xa1> e < <Q7 CUan> “ 3 aA h
a1 a2 a3 a4 a5 iy iy an_1 an
< 2 2 -
Low inner High inner
product product

Google Research

Some inner product errors are worse than others

Consider a query g and database points x,, ..., X

n

Rank points by inner product MIPS Results
(@200 < (0:700) < {0:20) -+ < (0 70 ST t—

2b,
3 2 >
Low inner High inner
product product

Perturbatlons of low
inner products are
unlikely to result in
changes to top-k

Google Research

Some inner product errors are worse than others

Consider a query g and database points x,, ..., X

n

Rank points by inner product MIPS Results
<qa$a1> <Qa$a2> <q7$a1>"’ <:<Q>$an> - < N
a, .
Low inner ngh inner
product product
Perturbatlons of low Perturbat|ons of h|gh inner
inner products are products change top-k and
unlikely to result in lead to recall loss

changes to top-k
Google Research

Some inner product errors are worse than others

Consider a query g and database points x,, ..., X
Rank points by inner product MIPS Results

0) < (020 < (@) < o)

2b,
Low inner ngh inner
product product

Takeaway: to maximize

Perturbatlons of low recall, emphasize Perturbat|ons of h|gh inner
inner products are reducing quantization products change top-k and
unlikely to result in error for high inner lead to recall loss

changes to top-k products

Google Research

Visualization of query distribution

Google Research

Visualization of query distribution

\

Quantization error: little Google Research
impact on MIPS recall

Visualization of query distribution

> X
I ——™ |
Quantization error: some Google Research

impact on MIPS recall

Visualization of query distribution

\

Quantization error: significant Google Research
impact on MIPS recall

Visualization of query distribution

\ Reconstruction loss

Quantization error: significant Google Research
impact on MIPS recall

Score-aware quantization loss

o, . ° . & Y ~. 2
Traditional quantization loss: ‘LqNQKq, xz o x2>]

Score-aware loss: 4:qNQ[w(<Q7 xz>) <q7 Ly — fz>2]

w: R — RT

By earlier intuition, w should put more weight on higher (q, ZUZ>

Example weight function: w(t) = 1(t =T).

Google Research

Evaluating and minimizing score-aware loss

2~ olw((a,) (g, w; — 7))

Expand expectation:

2] |
/ w(O)Eql(a, zi—2)2l{a &3) = dP({g, z;) < 1

—||33z‘|| _ J
'

)
WHTH(%@H +

Google Research

Evaluating and minimizing score-aware loss

Google Research

Evaluating and minimizing score-aware loss

2] |
/ w(OEql(a, 2i—20)2/{a i) = dP({g, z;) < 1

=[]

Integral evaluates to a weighted sum of T andr :

~ 1\ |2 ~ V12
hi (i, @) 17 +h, LlIr L (@4,)|
For w that weight higher inner products more, h, | > hi,L

Google Research

Visualization of result

A o .
/e C, gives lower inner product error than c,
even though [x - c || > x - c,||

Reason: x - ¢, is orthogonal, not parallel, to x

Google Research

Applications to quantization

Given a family of codewords C, we now want to solve
the following optimization problem.

argmin Y min Ay illry (@5, &)1+ 1 llr (5, &)
0 z; z2,€CH

We work out an approach for efficient approximate
optimization in the large-scale setting for:

1. Vector Quantization

2. Product Quantization

Google Research

Constant-bitrate comparison

GloVe: 100 dimensions, 1183514 points
Cosine distance dataset; normalize dataset to unit-norm during training time

25 codebooks, 16 centers each 50 codebooks, 16 centers each

0.9 Re;all of GIpve-l.ZM -100 bits 10 Re;all of G[ove-l.ZM - 200 bits

0.8F e o " T 0.9

0.7 b S T R T
Z 06 = W W Z 081 fif s S
Z o5l AAAAAA - QUIPS-Cov(x) | 1/ 444444 — QUIPS-Cov(x) |
S oallfl... — " QUIPS-Cov(q) |, S : .| — QuIPS-Cov(q)
o . ------------ - a | »HQUIHPS_Opt o 0.60 SR o - QUIPS-Opt

' | | LSQ 0.5 T el LSQ

02 ; Ours . — Ours :

0. 10 210 4l0 6IO 810 100 0'40 2]0 410 6IO 8]0 100

N N

Google Research

Glove: QPS-recall experiment setup

Pruning via K-means tree

Quantized Scoring Exact re-scoring

2000 centers; all but the Compute approximate Top b inner products

closest a centers to the inner products via with from AH are

query are pruned quantized database re-computed exactly; top
(product quantization 10 are returned as MIPS
with anisotropic loss) results

Higher q, b result in higher recall, lower QPS

Google Research

Glove: QPS-recall pareto frontier

Speed (Queries per Second)

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

l

annoy —+—
faiss-ivf —x<—

hnsw(faiss) —¥— |

hnswlib —=—
mrpt

NGT-panng —S—

NGT-onng —@—
kgraph

hnsw(nmslib) —&— |

rpforest —7—

SW-graph(nmslib) —%—

ScaNN —&—

0.86 0.88 0.9 0.92 0.94
Accuracy (Recall@10)

Google Research

Glove: QPS-recall pareto frontier

9000

8000

7000

6000 -

5000 -

4000

3000

2000

Speed (Queries per Second)

1000

l

annoy —+—
faiss-ivf —x<—

hnsw(faiss) —¥— |

hnswlib —=—
mrpt

NGT-panng —&—

NGT-onng —@—
kgraph

hnsw(nmslib) —&— |

rpforest —7—
SW-graph(nmslib) —%—
ScaNN —&—

0 v
0.88 0.9 0.92 0.94

Accuracy (Recall@10)

Source code: https://github.com/google-research/google-research/tree/master/scann

0.96

Google Research

https://github.com/google-research/google-research/tree/master/scann

