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Stochastic gradient descent (SGD)

Empirically SGD with constant learning rates is very efficient on neural nets

Some recent progress, but behaviour still not fully understood
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Stochastic gradient descent (SGD)

Empirically SGD with constant learning rates is very efficient on neural nets

Some recent progress, but behaviour still not fully understood

Existing convergence theory:

o Fast convergence to neighborhood of minimizer: depends on variance of gradients

o “Interpolation condition”

Non-Asymptotic Analysis of Stochastic

Fast and Faster Convergence of SGD for Over-Parameterized Models
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Results for neural nets?

Under standard Gaussian initializations:

e Deeper networks typically harder to train
o Innovations: alternate initializations, normalization, residual networks, etc.
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Results for neural nets?

Under standard Gaussian initializations:

e Deeper networks typically harder to train
o Innovations: alternate initializations, normalization, residual networks, etc.

e Wider networks typically easier to train
o Recent theoretical progress: SGD dynamics simplifies for infinitely wide networks
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Motivating questions

Why is constant learning rate SGD efficient on popular neural net models?

How does the neural network architecture and initialization affect this?
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Our approach

Identify a condition: “Gradient Confusion” that affects convergence of SGD

Establish relationships between network depth, layer width and performance
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Setting

Empirical risk minimization problem:

: : N
Minyega F(W) := miny ega % D izt Ji(wW)

N\

Objective function
for i-th example
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Setting

Empirical risk minimization problem:

: : N
Minyega F(W) := miny ega % D izt Ji(wW)

N\

Objective function

. _ for i-th example
Stochastic gradient descent (SGD):

Wit1 = Wi — aV fr(wWg)

-\ :> Gradient of randomly

sampled objective function

Learning rate @



“Gradient Confusion”

-

A set of objective functions {fz}zE[N] has gradient confusion 1 > 0 if:

(Vfi(w), Vfij(w)) > —n, Vi#j€[N]




“Gradient Confusion”

4 o . . . . A
A set of objective functions {fz}zE[N] has gradient confusion 1 > 0 if:

(Vfi(w), Vfij(w)) > —n, Vi#j€[N]

e Effect on convergence of SGD?

e For which neural network models is it small?




SGD is fast when gradient confusion is low (example)

Simple linear model example: fz( ) (yzx—rw)

=0

Suppose the data is orthogonal: X;I—Xj

Then, gradients are orthogonal: <sz (W), Vf] (W)> = ()

Gradient confusion: 1) = ()

Update for example i does not affect example j
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Convergence rate bound

KSimpIiﬁed result: \

SGD converges linearly to a neighborhood of the minimizer with constant step sizes
for Lipschitz-smooth and strongly-convex functions:
ar)

Plwi) — F(w) < g (Flwy) ~ Flaw') + 122

2, 1_2u(,_ NLo*
where a < 5, p=1— 2 (a ba”)

\_

(more general results in paper)
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Convergence rate bound

KSimpIiﬁed result: \

SGD converges linearly to a neighborhood of the minimizer with constant step sizes
for Lipschitz-smooth and strongly-convex functions:

gradient

/" confusion

an
1—0p

2 1» .
where a < %, p=1-— 2W"(oz — %) ‘ noise floor

K decreasing exponentially

F(wy) — F(w*) < p" (F(wo) — F(w")) +

(more general results in paper)

When gradient confusion is small, SGD has fast convergence
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Convergence rate bound

KSimpIiﬁed result: \

SGD converges linearly to a neighborhood of the minimizer with constant step sizes
for Lipschitz-smooth and strongly-convex functions:

gradient

r confusion

an
1—0p

2 1» .
where a < %, p=1-— 2W"(oz — %) ‘ noise floor

K decreasing exponentially

F(wy) — F(w*) < p" (F(wo) — F(w")) +

(more general results in paper)

When gradient confusion is small, SGD has fast convergence

How likely is it to be small for neural networks? @



Effect of neural net architecture at Gaussian initializations

Neural net: gw (x) :=0(Wga(Wga_1...0(W10(Wpx))...))
f : maximum width of a layer, ﬂ : depth of neural network

Activation functions can be RelUs, tanh or sigmoids
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Effect of neural net architecture at Gaussian initializations

Neural net: gw (x) :=0(Wga(Wga_1...0(W10(Wpx))...))
f : maximum width of a layer, ﬂ : depth of neural network

Activation functions can be RelUs, tanh or sigmoids

Assumptions:

e Gaussian initializations: W, € R%»*€p—1 nas entries from N (0, nﬁi_l) for all p

e Random data model: x randomly drawn from surface of d-dimensional sphere

k is typically set to %2 when using ReLUs, and 1 when using tanh non-linearities @



Effect of neural net architecture at Gaussian initializations

/Simpliﬁed result:

Under the above setup, the gradient confusion bound

(Vfi(w),Vfi(w)) > —n, Vi #j € [N].

holds with probability at least:

S L — Bexp(=O((*)) — N* exp(—O(¢*/5%)) )

~

(more general results in paper)
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Effect of neural net architecture at Gaussian initializations

/Simpliﬁed result: \

Under the above setup, the gradient confusion bound

(Vfi(w),Vfj(w)) > —n, Vi#je[N].

holds with probability at least:

S I pr (%)) - N2exp<—@<e2> y

network depth (more general results in paper)

e Training gets harder with increased depth (higher gradient confusion)
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Effect of neural net architecture at Gaussian initializations

/Simpliﬁed result:

Under the above setup, the gradient confusion bound

(Vfi(w),Vfj(w)) > —n, Vi#je[N].

5))

holds with probability at least: width

S 1 — 6exp(—@) — N?exp(—0©

~

!

(more general results in paper)

e Training gets harder with increased depth (higher gradient confusion)

e Training gets easier with increased width (lower gradient confusion)
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training loss

Empirically testing the theory: effect of depth

2.5 —0.1 —— depth 16
) - | _1 P
—— depth 16 oozt T 7 —— depth 22
. — jept: ;2 .{4:; s 6 —— depth 28
P— d:g:h 32 y TE —— depth 34
— £ 04 5
15 —— depth 40 2 2 depth/40
c -0.5 04 [ |
2 6 g
1.0 o © 3
B -o07 /
o 2
0.5 c 08
€ oo :
0.0 -1.0 0
0 50 100 150 200 15 20 25 30 35 40 —-0.4 -0.2 0.0 0.2 0.4
epochs network depth pairwise gradient cosine similarity

Image Classification on CIFAR-10 with CNNs (more empirical results in the paper)

Increasing depth slows down convergence, and increases gradient confusion
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training loss

Empirically testing the theory: effect of width
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Image Classification on CIFAR-10 with CNNs (more empirical results in the paper)

Increasing width speeds up convergence, and decreases gradient confusion
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How can we train very deep networks?

Previous results imply: increase width with depth

How do we train very deep networks without increasing the width?
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How can we train very deep networks?

Previous results imply: increase width with depth

How do we train very deep networks without increasing the width?

e Orthogonal initializations (for linear neural networks)

e Residual networks with batch normalization

Exact solutions to the nonlinear dynamics of learning in

deep linear neural networks

Batch Normalization Biases Residual Blocks
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Orthogonal init makes early training independent of depth

Informal result
Consider a linear neural network

where recaling parameter — 1 and each W initialized as an orthogonal matrix
gpP Y /2B g

Then the gradient confusion bound holds with probability at least

1 — N?exp (—can)

&» independent of

network depth @




Effect of batch normalization and skip connections

final training loss
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Image Classification on CIFAR-10 with CNNs (more empirical results in the paper)

The combination of batch normalization and skip connections

reduces gradient confusion and makes training easier
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Summary of key results
We introduce “Gradient Confusion” to help analyze trainability of neural networks
1. SGD convergence is faster when gradient confusion is lower

2. Under popular Gaussian initializations:
o Network depth increases gradient confusion, making training hard

o Layer width decreases gradient confusion, making training easier

3. How do we train very deep networks without increasing width?
o Orthogonal initializations make early training independent of depth

o Using the combination of batch normalization and skip connections @
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