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Overview

A forest (= ensemble of decision trees) is a powerful machine
learning method that has been successfully applied in many ap-
plications: computer vision, speech processing, NLP, etc. They
are often (part of) the winning methods in ML competitions
and challenges.

Some examples of forests:

Random forests train each tree independently on a different
data sample (bagging).
Boosted Trees sequentially train trees on reweighted versions of
the data.

In both cases, the forest prediction is obtained by weighted
averaging or voting.

We focus on regression forests, where the prediction is a contin-
uous scalar or vector, using bagging.
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Overview

Random forests (and their variations) for regression have impor-
tant advantages:

high predictive accuracy
few hyperparameters to set
reasonably fast to train and can be scaled to large datasets
considered to be robust against overfitting.

But they have an important disadvantage: the individual trees
they learn are far from accurate. This is due to two reasons:

Each tree is axis-aligned (a decision node tests for a single
feature, e.g. “if x7 ≥ 3 then go right”). This is a very restrictive
model, particularly for particularly for correlated features.
Standard tree learning algorithms, based on a greedy recursive
tree growth (such as CART), are highly suboptimal.

There are exist few works that propose forests of more complex
trees (Menze et al., 2000; Breiman, 2001; Frank & Kramer, 2004),
but they mostly focus on classification rather than regression and
improve marginally over conventional axis-aligned trees.
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Our idea

We address both issues by:

using trees with more complex nodes (oblique, i.e., hyperplane)
using a better optimization algorithm to learn the tree.

The resulting forests are smaller, shallower and much more
accurate, consistently over various datasets.

We build on a recently proposed algorithm for learning classi-
fication trees, Tree Alternating Optimization (TAO) (Carreira-
Perpiñán et al. 2018). TAO finds good approximate optima of an
objective function over a tree with predetermined structure and it
applies to trees beyond axis-aligned splits.

We adapt TAO to the regression case and then use it in combination
with bagging to learn forests of oblique trees.
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Optimizing a single tree with TAO: general formulation

We consider trees whose nodes make hard decisions (not soft
trees). Optimizing such trees is difficult because they are not
differentiable. Assuming a tree structure T is given (say, binary
complete of depth ∆), consider the following optimization prob-
lem over its parameters:

E(Θ) =

N∑

n=1

L(yn,T(xn;Θ)) + α
∑

i∈N

φi(θi)

given a training set {(xn,yn)}
N
n=1. Θ = {θi}i∈N is a set of

parameters of all tree nodes. The loss function L(y, z) is the
squared error ‖y − z‖22 in our case (although it is possible to
use other losses, such as the least absolute deviation or a robust
loss). The regularization term φi (e.g. ℓ1 norm) penalizes the
parameters θi of each node.
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Optimizing a single tree with TAO: separability of nodes

Our TAO algorithm for regression is based on 3 theorems: sepa-
rability condition, reduced problem over a leaf, reduced problem
over a decision node.

1. Separability condition

Consider any pair of nodes i and j. Assume the parameters of
all other nodes (Θrest) are fixed. If nodes i and j are not
descendants of each other, then E(Θ) can be rewritten as:

E(Θ) = Ei(θi) + Ej(θj) + Erest(Θrest)

In other words, the separability condition states that any set of
non-descendant nodes of a tree can be optimized independently.
Note that Erest(Θrest) can be treated as a constant since we fix
Θrest.
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Optimizing a single tree with TAO: leaves

A set of non-descendant nodes are all the leaves. Optimizing over
the parameters of one leaf is given by the following theorem.

2. Reduced problem over a leaf

If i is a leaf, the optimization of E(Θ) over θi can be
equivalently written as:

min
θi

Ei(θi) =
∑

n∈Ri

L(yn,gi(xn;θi)) + αφi(θi)

The reduced set Ri contains the training instances that reach
leaf i. Each leaf i has a predictor function gi(x;θi): R

D → R
K

(we use a constant or linear regressor) that produces the actual
output. Therefore, solving the reduced problem over a leaf i

amounts to fitting the leaf’s predictor gi to the instances in its
reduced set to minimize the original loss (e.g. squared error).
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Optimizing a single tree with TAO: decision nodes

An example of a set of non-descendant nodes are all the decision
nodes at the same depth. Optimizing over the parameters of one
decision node is given by the following theorem.

3. Reduced problem over a decision node

If i is a decision node, the optimization of E(Θ) over θi can be
equivalently written as:

min
θi

Ei(θi) =
∑

n∈Ri

lin(fi(xn;θi)) + αφi(θi)

where Ri is the reduced set of node i and (assuming binary trees)
fi(x;θi): R

D → {left, right} is a decision function in node i

which sends instance xn to the corresponding child of i. We
consider oblique trees, having hyperplane decision functions “go
to right if wT

i x + wi0 ≥ 0” (where θi = {wi, wi0}). lin(·) is the
loss incurred if xn chooses the right or left subtree.
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Optimizing a single tree with TAO: decision nodes
(cont.)

The reduced problem over a decision node can be equivalently
rewritten as a weighted 0/1 loss binary classification problem on
the node’s reduced set instances:

min
θi

Ei(θi) =
∑

n∈Ri

Lin(yin, fi(xn;θi)) + αφi(θi)

where the weighted 0/1 loss Lin(yin, ·) for instance n ∈ Ri is
defined as Lin(yin, y) = lin(y) − lin(yin) ∀y ∈ {left, right},
where yin = argminy lin(y) is a “pseudolabel” indicating a child
which gives the lowest value of the regression loss L for instance
xn under the current tree.
For hyperplane nodes, this is NP-hard, but can be approximated
by using a convex surrogate loss (we use the logistic loss). Hence,
if φi is an ℓ1 norm, this requires solving an ℓ1-regularized logistic
regression.
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Pseudocode for training a single TAO tree

TAO repeatedly alternates optimizing over sets of nodes by train-
ing a (binary) classifier in the decision nodes and a regressor in
the leaves, while monotonically decr. the obj. function E(Θ).

input training set; initial tree T(·;Θ) of depth ∆
N0, . . . ,N∆ ← nodes at depth 0, . . . ,∆, respectively
R1 ← {1, . . . , N}
repeat

for d = 0 to ∆
parfor i ∈ Nd

if i is a leaf then
θi ← train regressor gi on reduced set Ri

else

θi ← train decision function fi on Ri

compute the reduced sets of each child of i
until stop
prune dead subtrees of T
return T
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Ensemble of TAO trees

Out of many ways to ensemble individual learners (bagging,
boosting, etc.), we choose a simple one: we train each TAO
tree independently (and in parallel) on a random subset of M
samples of the available training data (N instances). If M = N

this is bagging.
The forest prediction is the average of its trees’ predictions.
Although our TAO regression algorithm works more generally,
our experiments use:

oblique trees (fi is linear), which are more powerful than axis-
aligned trees
constant- and linear-predictor leaves (gi).

We initialize each TAO tree (T) from a complete tree of depth
∆ and random node parameters.

We train each tree with an ℓ1 regularizer to achieve a more
compact model: it encourages the weight vectors of individual
nodes to be sparse and leads to more dead subtrees which can
be pruned.
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Smaller, more accurate regression forests using tree alternating
11 / 16



Experiments: standard benchmarks and algorithms

TAO-c: our oblique trees with constant leaves,
TAO-l: our oblique trees with linear leaves.
See the paper for extended results, additional datasets, etc.

Forest Etest T ∆

CART 3.63±0.32 1 25
TAO-c 2.71±0.04 1 6
RF 2.62±0.04 100 36
ARF 2.62±0.01 50 15
AdaBoost 2.61±0.16 100 10
RF 2.60±0.01 1k 37

cp
u
a
ct

(N
=
8
k
,D

=
2
1
)

XGBoost 2.60±0.00 100 10
ET 2.58±0.03 100 45
TAO-l 2.58±0.02 1 5
XGBoost 2.57±0.00 1k 10
AdaBoost 2.56±0.11 1k 10
ET 2.49±0.03 1k 50
TAO-c 2.39±0.05 30 7
TAO-l 2.35±0.01 30 5

Forest Etest T ∆

CART 2.71±0.06 1 51
TAO-c 1.54±0.05 1 7
AdaBoost 1.48±0.03 100 10
XGBoost 1.45±0.00 100 10
AdaBoost 1.31±0.01 1k 10
XGBoost 1.18±0.00 1k 10

C
T

sl
ic
e
(N

=
5
4
k
,D

=
3
8
4
)

TAO-l 1.16±0.02 1 5
ET 1.06±0.01 100 82
RF 1.03±0.01 100 71
cRF 1.00 1k –
RF 0.97±0.01 1k 78
TAO-c 0.89±0.02 30 7
TAO-l 0.58±0.03 30 6

The TAO regression forests are smaller (fewer and shallower trees) yet
consistently more accurate, particularly if using linear predictors at the
leaves.
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Experiments: MNIST digit rotation

Task: given an MNIST image, predict a class-dependent
rotation of it (N=60k,D=784,K=784).

Forest Etest × 10−2 #pars. FLOPS T ∆

AdaBoost >24 hours runtime 39k 25
CART 23.08±0.12 120k 28 1 28
RF 14.38±0.23 7.6M (2 830) 100 39
RF 14.08±0.25 68M (28k) 1k 40
ET 13.83±0.12 12M (3 091) 100 35
TAO-c 13.76±0.09 9M 42k 30 29
ET 13.72±0.13 109M (3 360) 1k 38
XGBoost 10.35±0.00 180M (613k) 39k 25
TAO-l 9.63±0.17 288k 4 491 1 7
TAO-l 6.59±0.11 7.7M 126k 30 7

The improvement of TAO regression forests over other methods is clear,
confirming our earlier results even more drastically.
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Smaller, more accurate regression forests using tree alternating
13 / 16



Experiments: MNIST digit rotation (cont.)

input

ground-truth
output

RF
T = 1k

ET
T = 1k

XGBoost
T = 39k

TAO-l
T = 1

TAO-l
T = 30
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Experiments: forest hyperparameters

Hyperparameters’ exploration (cpuact dataset): depth ∆, # of TAO it-
erations I and # of trees T . Each column fixes one factor and varies the
other two. In the paper, we also explore the effect of various diversity
mechanisms.
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Note how the forest can eventually overfit, which suggests that TAO is
optimizing each tree well.
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Conclusion

Our hypothesis was that using more complex trees and a better
tree optimization would produce more accurate forests. This
was indeed the case, across a range of datasets we tried:

Our TAO regression forests outperform all competing algorithms
we tested in terms of accuracy.
The TAO forests are smaller in terms of model size: number of
trees, total number of parameters, depth.

Their design in terms of hyperparameter tuning remains as
simple as with random forests or boosting: we choose the tree
depth and number of trees as large as computationally possible,
but without overfitting.

This makes our TAO forests a model of immediate, widespread
practical applicability and impact, and suggests it could be-
come the state-of-the-art in tree ensembles.

In separate papers, we have also found that TAO trees improve
significantly in classification (rather than regression) and with
boosting (rather than bagging).

A. Zharmagambetov and M. Á. Carreira-Perpiñán
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