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Line attractor dynamics in trained RNNs

Approximate line attractor dynamics explain the most of the RNN’s performance

o 4 I

* I Initial state

c I /

o

o O0-

S ]

S |

S

O I

5 '

O c". I

% o’ I

AR _8 : I ]
-8 0 8

Principal component #1

Maheswaranathan®, Williams® et al, NeurlPS 2019



Line attractor dynamics in trained RNNs

Approximate line attractor dynamics explain the most of the RNN’s performance
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Line attractor dynamics in trained RNNs

Approximate line attractor dynamics explain the most of the RNN’s performance
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Contextual processing in RNNs

Model prediction (logit)
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Contributions of our work
Data-driven method to identify contextual inputs
B Analysis of the strength and timing of modifier effects

Experiments that demonstrate the identified mechanisms are
necessary and sufficient for RNN performance
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Identifying contextual processing

Allows us to identity modifier inputs
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Modifier subspace
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Perturb RNN to remove modifier effects




Perturbation experiment removes
modifier effects
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Perturbation experiment removes
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Perturbation experiment removes
modifier effects
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Thank you!
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