Mutual Transfer Learning for Massive Data

Ching-Wei Cheng¹, Xingye Qiao^{2*} and Guang Cheng¹

- 1. Department of Statistics, Purdue University
- 2. Department of Mathematical Sciences, Binghamton University

ICML 2020

■ Data from a new domain (labeled or unlabeled) are too limited.

- Data from a new domain (labeled or unlabeled) are too limited.
 - Transfer learning: use abundant data from a source domain to improve the learning performance (including prediction and inference) for a target domain.

- Data from a new domain (labeled or unlabeled) are too limited.
 - Transfer learning: use abundant data from a source domain to improve the learning performance (including prediction and inference) for a target domain.
 - Typically, the target and the source domains are known and fixed.

- Data from a new domain (labeled or unlabeled) are too limited.
 - Transfer learning: use abundant data from a source domain to improve the learning performance (including prediction and inference) for a target domain.
 - Typically, the target and the source domains are known and fixed.
- In this paper, every data domain could potentially be the target of interest, and it could also be a useful source to help the learning in other data domains mutual transfer learning.

• Given a target domain, not every domain can be a successful source; only data sets that are similar enough to be thought as from the same population are useful sources for each other

- Given a target domain, not every domain can be a successful source; only data sets that are similar enough to be thought as from the same population are useful sources for each other
 - Suggests a mutual learnability structure

- Given a target domain, not every domain can be a successful source; only data sets that are similar enough to be thought as from the same population are useful sources for each other
 - Suggests a mutual learnability structure
- How to identify useful sources?

- Given a target domain, not every domain can be a successful source; only data sets that are similar enough to be thought as from the same population are useful sources for each other
 - Suggests a mutual learnability structure
- How to identify useful sources?
- A confidence distribution (CD) fusion approach is proposed to recover such mutual learnability relation in the transfer learning regime

- Given a target domain, not every domain can be a successful source; only data sets that are similar enough to be thought as from the same population are useful sources for each other
 - Suggests a mutual learnability structure
- How to identify useful sources?
- A confidence distribution (CD) fusion approach is proposed to recover such mutual learnability relation in the transfer learning regime
 - Achieves the same oracle statistical inferential accuracy as if the true mutual learnability structure were known.

- Given a target domain, not every domain can be a successful source; only data sets that are similar enough to be thought as from the same population are useful sources for each other
 - Suggests a mutual learnability structure
- How to identify useful sources?
- A confidence distribution (CD) fusion approach is proposed to recover such mutual learnability relation in the transfer learning regime
 - Achieves the same oracle statistical inferential accuracy as if the true mutual learnability structure were known.
 - Implemented in an efficient parallel fashion to deal with large-scale data.

Big Climate Data

Figure: U.S. average temperature map in October, 2016.

■ 503,616 monthly observations from 344 climate divisions (data units) from January 1895 to December 2016

Big Data with Two-Layer Heterogeneity

Big Data typically consists of multiple datasets ("data units") that are collected in different time periods, at different locations and using different approaches

Big Data with Two-Layer Heterogeneity

Big Data typically consists of multiple datasets ("data units") that are collected in different time periods, at different locations and using different approaches

Two-layer heterogeneity:

- 1st layer: Subpopulation heterogeneity
- 2nd layer: Within-subpopulation heterogeneity (Units are still different within subpopulations)

In this work, we propose a Mutual Transfer Learning (MTL) model
Goals:
Model:
Method:

In this work, we propose a Mutual Transfer Learning (MTL) model

Goals:

- Mutual learnability structure recovery (which domains are useful?)
- The best possible statistical estimation and inference
- Scalable for massive data

Model:

Method:

In this work, we propose a Mutual Transfer Learning (MTL) model

Goals:

- Mutual learnability structure recovery (which domains are useful?)
- The best possible statistical estimation and inference
- Scalable for massive data

Model:

- MTL is based on linear mixed-effects model (LMM) using regression as examples
- MTL can be easily generalized to other response data types

Method:

In this work, we propose a Mutual Transfer Learning (MTL) model

Goals:

- Mutual learnability structure recovery (which domains are useful?)
- The best possible statistical estimation and inference
- Scalable for massive data

Model:

- MTL is based on linear mixed-effects model (LMM) using regression as examples
- MTL can be easily generalized to other response data types

Method:

■ Confidence distribution (CD) fusion approach

Outline

- Statistical Model and Method
 - Two-Layer Heterogeneity Model
 - CD Fusion Approach
- Theoretical Guarantees

3 Numerical Results

MTL: Unit Level

LMM for the i-th data unit

$$egin{array}{lll} oldsymbol{y}_i &= oldsymbol{x}_i &oldsymbol{eta} &+ oldsymbol{z}_i & oldsymbol{arepsilon}_i imes 1 & n_i imes p & n_i imes q \end{array}$$

- $oldsymbol{eta} oldsymbol{eta} \in \mathbb{R}^p$ is the coefficients for the global feature vector $oldsymbol{x}_i$
- $m{\theta}_i \in \mathbb{R}^q$ is the coefficients for heterogeneous feature vector z_i

- lacksquare $m{u}_i$ is the unit-specific random effect with $\mathsf{E}[m{u}_i] = m{0}$ and $\mathsf{Cov}(m{u}_i) = \sigma_u^2 m{I}$
- ullet $oldsymbol{arepsilon}_i$ is the error vector with $\mathsf{E}[oldsymbol{arepsilon}_i] = oldsymbol{0}$ and $\mathsf{Cov}(oldsymbol{arepsilon}_i) = \sigma_arepsilon^2 oldsymbol{I}$

MTL: Subpopulation Level

LMM for the *i*-th data unit in the *s*-th subpopulation

- $oldsymbol{eta} oldsymbol{eta} \in \mathbb{R}^p$ is the coefficients for the global feature vector $oldsymbol{x}_i$
- $m{ heta}_i \in \mathbb{R}^q$ is the coefficients for heterogeneous feature vector $m{z}_i$
 - ullet Assume $oldsymbol{ heta}_i \equiv oldsymbol{lpha}_s$ if unit i belongs to subpopulation s
 - ⇒ Need to reveal learnability structure
- lacksquare $m{u}_i$ is the unit-specific random effect with $\mathsf{E}[m{u}_i] = m{0}$ and $\mathsf{Cov}(m{u}_i) = \sigma_u^2 m{I}$
 - Within-subpopulation heterogeneity
- $lacksquare arepsilon_i$ is the error vector with $\mathsf{E}[arepsilon_i] = m{0}$ and $\mathsf{Cov}(arepsilon_i) = \sigma_arepsilon^2 m{I}$

THEM: Matrix Form

Matrix form with M data units $(N := \sum_{i=1}^{M} n_i)$

$$egin{array}{lll} oldsymbol{Y} &=& oldsymbol{X} & oldsymbol{eta} + & oldsymbol{Z} & oldsymbol{(\Theta)} + & oldsymbol{U} & oldsymbol{)} + & oldsymbol{\mathcal{E}} \ oldsymbol{eta} & oldsymbol{eta} &$$

THEM: Matrix Form

Matrix form with M data units coming from S subpopulations (oracle) $(N := \sum_{i=1}^{M} n_i)$

$$egin{array}{lll} oldsymbol{Y} &=& oldsymbol{X} & eta + & oldsymbol{Z} & oldsymbol{(\Theta)} &+& oldsymbol{U} &oldsymbol{)} + & oldsymbol{\mathcal{E}} \ oldsymbol{\left(egin{array}{lll} oldsymbol{x}_1 \ oldsymbol{:} oldsymbol{y}_M \ oldsymbol{)} &= egin{bmatrix} oldsymbol{x}_1 \ oldsymbol{:} oldsymbol{x}_M \ oldsymbol{:} oldsymbol{X}_M \ oldsymbol{)} \end{array} egin{array}{lll} oldsymbol{\left(oldsymbol{OOM} oldsymbol{A} oldsymbol{lpha} &+ oldsymbol{\left(oldsymbol{u}_1\ oldsymbol{:} oldsymbol{u}_M \ oldsymbol{)} \end{array} \end{pmatrix} egin{array}{lll} oldsymbol{\left(oldsymbol{u}_1\ oldsymbol{:} oldsymbol{u}_M \ oldsymbol{\cdot} \end{array} \end{pmatrix} egin{array}{ll} oldsymbol{\left(oldsymbol{u}_1\ oldsymbol{:} oldsymbol{u}_M \ oldsymbol{\cdot} \end{array} \end{pmatrix} egin{array}{ll} oldsymbol{\left(oldsymbol{u}_1\ oldsymbol{:} oldsymbol{u}_M \ oldsymbol{X} \end{array} \end{pmatrix} egin{array}{ll} oldsymbol{\left(oldsymbol{u}_1\ oldsymbol{:} oldsymbol{u}_M \ oldsymbol{\cdot} \end{array} \end{pmatrix} egin{array}{ll} oldsymbol{\left(oldsymbol{u}_1\ oldsymbol{u}_M \ oldsymbol{\cdot} \end{array} \right) + oldsymbol{\left(oldsymbol{v}_1\ oldsymbol{:} oldsymbol{u}_M \ oldsymbol{\cdot} \end{array} \end{pmatrix} egin{array}{ll} oldsymbol{\left(oldsymbol{u}_1\ oldsymbol{u}_M \ oldsymbol{\cdot} \end{array} \end{pmatrix} egin{array}{ll} oldsymbol{\left(oldsymbol{u}_1\ oldsymbol{u}_1 \ oldsymbol{u}_1 \ oldsymbol{u}_2 \ oldsymbol{u}_1 \ oldsymbol{u}_2 \ oldsymbol{u} \end{array} \end{pmatrix} egin{array}{ll} oldsymbol{\left(oldsymbol{u}_1\ oldsymbol{u}_2 \ oldsymbol{u}_2 \ oldsymbol{u} \end{array} & oldsymbol{\left(oldsymbol{u}_1\ oldsymbol{u}_2 \ oldsymbol{u}_2 \ oldsymbol{u} \end{array} \right) + oldsymbol{\left(oldsymbol{u}_1\ oldsymbol{u}_2 \ oldsymbol{u}_2 \ oldsymbol{u} \end{array} \right) + oldsymbol{\left(oldsymbol{u}_2\ oldsymbol{u}_2 \ oldsymbol{u} \end{array} \right) + oldsymbol{\left(oldsymbol{u}_2 \ old$$

- lacksquare Exists an (unknown) label matrix $m{A}_{Mq imes Sq}$ such that $m{\Theta}=m{A}m{lpha}$ with $m{lpha}=egin{pmatrix} \widetilde{m{\Box}} \ \vdots \ \alpha_S \end{pmatrix}_{Sq imes 1}$
 - $m{ heta}_i \equiv m{lpha}_s$ if unit i belongs to subpopulation s
 - lacksquare Only S different values of $oldsymbol{ heta}_i$'s

A Naive Full-Data Estimator

$$egin{pmatrix} \widehat{oldsymbol{eta}}(\lambda) \ \widehat{oldsymbol{\Theta}}(\lambda) \end{pmatrix} = rg \min_{oldsymbol{eta} \in \mathbb{R}^p, oldsymbol{eta} \in \mathbb{R}^{M_q}} Q_N(oldsymbol{eta}, oldsymbol{\Theta}) ext{ where}$$

$$Q_{N}(\boldsymbol{\beta}, \boldsymbol{\Theta}) = \left\{ \underbrace{\frac{1}{2} \sum_{i=1}^{M} (\boldsymbol{y}_{i} - \boldsymbol{x}_{i} \boldsymbol{\beta} - \boldsymbol{z}_{i} \boldsymbol{\theta}_{i})^{\top} \boldsymbol{W}_{i} (\boldsymbol{y}_{i} - \boldsymbol{x}_{i} \boldsymbol{\beta} - \boldsymbol{z}_{i} \boldsymbol{\theta}_{i})}_{\text{generalized least squares (GLS) based on full data}} + \underbrace{\sum_{1 \leq i < j \leq M} p_{\gamma} \left(\left\| \boldsymbol{\theta}_{i} - \boldsymbol{\theta}_{j} \right\| ; \lambda \right)}_{\text{pairwise concave fusion penalty}} \right\}$$

- $lackbox{lack} lackbox{lackbox{W}}_i = \mathsf{Cov}(oldsymbol{y}_i|oldsymbol{x}_i,oldsymbol{z}_i)^{-1} = ig(\sigma_arepsilon^2 oldsymbol{I}_{n_i} + \sigma_u^2 oldsymbol{z}_i oldsymbol{z}_i^{ op}ig)^{-1}$
- $\lambda > 0$ is a tuning parameter
- $> \gamma > 0$ determines the concavity of the penalty

Concave Penalty Function $p_{\gamma}(t;\lambda)$

In this graph,

- $\lambda = 1$
- $\blacksquare \ \gamma = 3.7 \ \text{for MCP}$ and SCAD and $\gamma = 1.85 \ \text{for TLP}$

Concave Penalty Function $p_{\gamma}(t;\lambda)$

In our analysis,

- lacksquare $\lambda > 0$ is chosen by modified BIC (Wang et al., 2009)
- $\blacksquare \ \gamma = 3.7 \ \text{for MCP}$ and SCAD and $\gamma = 1.85 \ \text{for TLP}$

Computation Barrier

$$Q_{N}(\boldsymbol{\beta}, \boldsymbol{\Theta}) = \left\{ \frac{1}{2} \sum_{i=1}^{M} (\boldsymbol{y}_{i} - \boldsymbol{x}_{i} \boldsymbol{\beta} - \boldsymbol{z}_{i} \boldsymbol{\theta}_{i})^{\top} \boldsymbol{W}_{i} (\boldsymbol{y}_{i} - \boldsymbol{x}_{i} \boldsymbol{\beta} - \boldsymbol{z}_{i} \boldsymbol{\theta}_{i}) + \sum_{1 \leq i < j \leq M} p_{\gamma} (\|\boldsymbol{\theta}_{i} - \boldsymbol{\theta}_{j}\|; \lambda) \right\}$$

- Communication cost: each local machine passes
 - \blacksquare an $n_i \times (p+q+1)$ data matrix (y_i, x_i, z_i) and
 - lacksquare an $m{n_i} imes m{n_i}$ weight matrix $m{W}_i$

to a centralized computer node

Communication cost for CD fusion

Computation Barrier

Replace it using the CD approach of Liu et al. (2015) to combine unit GLS estimates

$$Q_{N}(\boldsymbol{\beta}, \boldsymbol{\Theta}) = \left\{ \frac{1}{2} \sum_{i=1}^{M} (\boldsymbol{y}_{i} - \boldsymbol{x}_{i}\boldsymbol{\beta} - \boldsymbol{z}_{i}\boldsymbol{\theta}_{i})^{\top} \boldsymbol{W}_{i} (\boldsymbol{y}_{i} - \boldsymbol{x}_{i}\boldsymbol{\beta} - \boldsymbol{z}_{i}\boldsymbol{\theta}_{i}) + \sum_{1 \leq i < j \leq M} p_{\gamma} \left(\|\boldsymbol{\theta}_{i} - \boldsymbol{\theta}_{j}\| ; \lambda \right) \right\}$$

- Communication cost: each local machine passes
 - \blacksquare an $n_i \times (p+q+1)$ data matrix (y_i, x_i, z_i) and
 - lacksquare an $m{n_i} imes m{n_i}$ weight matrix $m{W}_i$

to a centralized computer node

► Communication cost for CD fusion

Unit GLS Estimates

Unit GLS estimates are defined as

$$\begin{pmatrix} \widehat{\boldsymbol{\beta}}_i \\ \widehat{\boldsymbol{\theta}}_i \end{pmatrix} = \begin{bmatrix} (\boldsymbol{x}_i, \boldsymbol{z}_i)^\top \boldsymbol{W}_i (\boldsymbol{x}_i, \boldsymbol{z}_i) \end{bmatrix}^{-1} (\boldsymbol{x}_i, \boldsymbol{z}_i)^\top \boldsymbol{W}_i \boldsymbol{y}_i \overset{D}{\Longrightarrow} \mathcal{N} \begin{pmatrix} \boldsymbol{\beta}_0 \\ \boldsymbol{\theta}_{i,0} \end{pmatrix}, \underbrace{\begin{bmatrix} (\boldsymbol{x}_i, \boldsymbol{z}_i)^\top \boldsymbol{W}_i (\boldsymbol{x}_i, \boldsymbol{z}_i) \end{bmatrix}^{-1}}_{\boldsymbol{\Sigma}_i} \end{pmatrix}$$

where
$$m{W}_i = \mathsf{Cov}(m{y}_i|m{x}_i,m{z}_i)^{-1} = \left(\sigma_arepsilon^2m{I}_{n_i} + \sigma_u^2m{z}_im{z}_i^ op
ight)^{-1}$$

- lacksquare σ_u^2 and $\sigma_arepsilon^2$ can be consistently estimated through restricted maximum likelihood (REML) method.
- For simplicity, we assume σ_u^2 and σ_ε^2 (and thus W_i 's) are known

CD Fusion Approach: Unit CD Density

Unit GLS estimates are defined as

$$\begin{pmatrix} \widehat{\boldsymbol{\beta}}_i \\ \widehat{\boldsymbol{\theta}}_i \end{pmatrix} = \begin{bmatrix} (\boldsymbol{x}_i, \boldsymbol{z}_i)^\top \boldsymbol{W}_i (\boldsymbol{x}_i, \boldsymbol{z}_i) \end{bmatrix}^{-1} (\boldsymbol{x}_i, \boldsymbol{z}_i)^\top \boldsymbol{W}_i \boldsymbol{y}_i \overset{D}{\Longrightarrow} \mathcal{N} \begin{pmatrix} \boldsymbol{\beta}_0 \\ \boldsymbol{\theta}_{i,0} \end{pmatrix}, \underbrace{\begin{bmatrix} (\boldsymbol{x}_i, \boldsymbol{z}_i)^\top \boldsymbol{W}_i (\boldsymbol{x}_i, \boldsymbol{z}_i) \end{bmatrix}^{-1}}_{\boldsymbol{\Sigma}_i} \end{pmatrix}$$

where $m{W}_i = \mathsf{Cov}(m{y}_i|m{x}_i,m{z}_i)^{-1} = \left(\sigma_arepsilon^2m{I}_{n_i} + \sigma_u^2m{z}_im{z}_i^ op
ight)^{-1}$

- σ_u^2 and σ_ε^2 can be consistently estimated through restricted maximum likelihood (REML) method.
- lacksquare For simplicity, we assume σ_u^2 and $\sigma_arepsilon^2$ (and thus W_i 's) are known
- CD density can be assigned by switching the roles of estimator and parameter of interest, i.e., define the unit CD density by

$$h_i(m{eta}, m{ heta}_i) := ext{density of } \mathcal{N}\left(egin{pmatrix} \widehat{m{eta}}_i \\ \widehat{m{ heta}}_i \end{pmatrix}, m{\Sigma}_i
ight)$$

CD Fusion Approach: Combined CD Density

■ Following Liu et al. (2015), the combined CD density is defined by

$$h(\boldsymbol{eta}, \boldsymbol{\Theta}) := \prod_{i=1}^M h_i(\boldsymbol{eta}, \boldsymbol{ heta}_i)$$

CD Fusion Approach: Combined CD Density

■ Following Liu et al. (2015), the combined CD density is defined by

$$h(oldsymbol{eta},oldsymbol{\Theta}) := \prod_{i=1}^M h_i(oldsymbol{eta},oldsymbol{ heta}_i)$$

■ By omitting additive constant terms, we have

$$-\log h(oldsymbol{eta},oldsymbol{\Theta}) \propto \sum_{i=1}^{M} \left(\widehat{oldsymbol{eta}}_{i}^{i} - oldsymbol{eta}_{i}
ight)^{ op} oldsymbol{\Sigma}_{i}^{-1} \left(\widehat{oldsymbol{eta}}_{i}^{i} - oldsymbol{eta}_{i}
ight)$$

CD Fusion Estimator

$$\begin{pmatrix} \widehat{\boldsymbol{\beta}}_{\mathrm{CD}}(\lambda) \\ \widehat{\boldsymbol{\Theta}}_{\mathrm{CD}}(\lambda) \end{pmatrix} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{p}, \boldsymbol{\Theta} \in \mathbb{R}^{Mq}}{\operatorname{arg\,min}} Q_{N}^{\mathrm{CD}}(\boldsymbol{\beta}, \boldsymbol{\Theta}) \text{ where}$$

$$Q_{N}^{\mathrm{CD}}(\boldsymbol{\beta}, \boldsymbol{\Theta}) = -\log \underbrace{h(\boldsymbol{\beta}, \boldsymbol{\Theta})}_{\substack{\mathsf{C\,ombined}\\ \mathsf{CD\,\,density}}} + \underbrace{\sum_{1 \leq i < j \leq M} p_{\gamma} \left(\|\boldsymbol{\theta}_{i} - \boldsymbol{\theta}_{j}\| \; ; \lambda \right)}_{\substack{\mathsf{pairwise\,\,concave\,\,fusion\,\,penalty}}$$

CD Fusion Estimator

$$\begin{pmatrix} \widehat{\boldsymbol{\beta}}_{\mathrm{CD}}(\lambda) \\ \widehat{\boldsymbol{\Theta}}_{\mathrm{CD}}(\lambda) \end{pmatrix} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p, \boldsymbol{\Theta} \in \mathbb{R}^{Mq}}{\mathrm{arg\,min}} Q_N^{\mathrm{CD}}(\boldsymbol{\beta}, \boldsymbol{\Theta}) \text{ where}$$

$$Q_N^{\mathrm{CD}}(\boldsymbol{\beta}, \boldsymbol{\Theta}) = -\log \underbrace{h(\boldsymbol{\beta}, \boldsymbol{\Theta})}_{\text{Combined}} + \underbrace{\sum_{1 \leq i < j \leq M} p_\gamma \left(\|\boldsymbol{\theta}_i - \boldsymbol{\theta}_j\| \; ; \lambda \right)}_{\text{pairwise concave fusion penalty}}$$

- Communication cost: each local machine passes
 - lacksquare a (p+q)-vector $(\widehat{m{eta}}_i^ op,\widehat{m{ heta}}_i^ op)^ op$ and
 - lacksquare a (p+q) imes (p+q) matrix $oldsymbol{\Sigma}_i$

to a centralized computer node

◆ Communication cost for the full-data approach

Oracle Estimator

The oracle estimator of (β, α) is defined by the full-data GLS estimator given the true subpopulations

$$\begin{pmatrix} \widehat{\boldsymbol{\beta}}_{\mathrm{OR}} \\ \widehat{\boldsymbol{\alpha}}_{\mathrm{OR}} \end{pmatrix} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p, \boldsymbol{\alpha} \in \mathbb{R}^{Sq}}{\mathrm{arg \, min}} \frac{1}{2} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{A}\boldsymbol{\alpha})^{\top} \boldsymbol{W} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{A}\boldsymbol{\alpha}) \\
= \left[(\boldsymbol{X}, \boldsymbol{Z}\boldsymbol{A})^{\top} \boldsymbol{W} (\boldsymbol{X}, \boldsymbol{Z}\boldsymbol{A}) \right]^{-1} (\boldsymbol{X}, \boldsymbol{Z}\boldsymbol{A})^{\top} \boldsymbol{W} \boldsymbol{Y}$$

where $oldsymbol{W} = \mathrm{diag}\left(oldsymbol{W}_1, \ldots, oldsymbol{W}_M
ight)$

- A is unknown in reality
- Not computable with massive sample size

Theoretical Guarantees

Regularity conditions on

- Random design matrices (sub-Gaussian tails and eigenvalue restrictions)
- lacksquare Sub-Gaussian tails for random effects $oldsymbol{U}$ and noises $oldsymbol{\mathcal{E}}$
- Concave fusion penalty (satisfied by MCP, SCAD and TLP)

Theoretical Guarantees

Regularity conditions on

- Random design matrices (sub-Gaussian tails and eigenvalue restrictions)
- lacksquare Sub-Gaussian tails for random effects $oldsymbol{U}$ and noises $oldsymbol{\mathcal{E}}$
- Concave fusion penalty (satisfied by MCP, SCAD and TLP)

Theoretical Guarantees

Regularity conditions on

- Random design matrices (sub-Gaussian tails and eigenvalue restrictions)
- lacksquare Sub-Gaussian tails for random effects $oldsymbol{U}$ and noises $oldsymbol{\mathcal{E}}$
- Concave fusion penalty (satisfied by MCP, SCAD and TLP)

Revisiting Our Goals

■ Mutual learnability structure recovery

Sol: Pairwise fusion penalty to fuse unit level β_i 's

Theoretical guarantees, provided that S does not grow too fast and a minimal signal condition

Revisiting Our Goals

Mutual learnability structure recovery

Sol: Pairwise fusion penalty to fuse unit level $oldsymbol{eta}_i$'s Theoretical guarantees, provided that S does not grow too fast and a minimal signal condition

Accurate estimation and inference

Sol: Achieves the oracle level

Revisiting Our Goals

■ Mutual learnability structure recovery

Sol: Pairwise fusion penalty to fuse unit level β_i 's Theoretical guarantees, provided that S does not grow too fast and a minimal signal condition

Accurate estimation and inference

Sol: Achieves the oracle level

■ Computable approach for massive data

Sol: CD approach to combine unit estimates ADMM with parallel computing

Numerical Results

Summary of simulation studies:

■ The CD fusion approach behaves desirably with MCP, SCAD and TLP

Numerical Results

Summary of simulation studies:

- The CD fusion approach behaves desirably with MCP, SCAD and TLP
- MCP is recommended in general
 - Decent and stable performance
 - Fast (only slightly slower than SCAD)

Numerical Results

Summary of simulation studies:

- The CD fusion approach behaves desirably with MCP, SCAD and TLP
- MCP is recommended in general
 - Decent and stable performance
 - Fast (only slightly slower than SCAD)
- SCAD and TLP are unstable in some cases
- lacksquare L_1 "fails" in all cases

Real Data Example: NOAA1's nClimDiv

- Time period chosen: January 1895 to December 2016
- N = 503,616 observations from M = 344 climate divisions (data units)

¹National Oceanic and Atmospheric Administration

Real Data Example: NOAA¹'s nClimDiv

- Time period chosen: January 1895 to December 2016
- N = 503,616 observations from M = 344 climate divisions (data units)
- Response: monthly average temperature

¹National Oceanic and Atmospheric Administration

Real Data Example: NOAA¹'s nClimDiv

- Time period chosen: January 1895 to December 2016
- Arr N=503,616 observations from M=344 climate divisions (data units)
- Response: monthly average temperature
- 8 candidate covariates

▶ How to choose global feature:

- p=5 covariates as global effects $\boldsymbol{\beta}$
 - 3 dummy variables for seasonal effects: Summer, Fall and Winter
 - Palmer Drought Severity Index (PSDI)
 - Palmer Hydrological Drought Index (PHDI)
- $\mathbf{q}=3$ covariates as heterogeneous effects $\boldsymbol{\theta}_i$'s
 - Intercept
 - Precipitation (PCPN)
 - Palmer Z Index (ZNDX)

¹National Oceanic and Atmospheric Administration

Real Data Example: NOAA¹'s nClimDiv

- Time period chosen: January 1895 to December 2016
- $ightharpoonup N = 503{,}616$ observations from M = 344 climate divisions (data units)
- Response: monthly average temperature
- 8 candidate covariates

How to choose global features

- p=5 covariates as global effects $\boldsymbol{\beta}$
 - 3 dummy variables for seasonal effects: Summer, Fall and Winter
 - Palmer Drought Severity Index (PSDI)
 - Palmer Hydrological Drought Index (PHDI)
- $\mathbf{q}=3$ covariates as heterogeneous effects $\boldsymbol{\theta}_i$'s
 - Intercept
 - Precipitation (PCPN)
 - Palmer Z Index (ZNDX)
- Only MCP is used in analysis

¹National Oceanic and Atmospheric Administration

Real Data Example: Estimated Subpopulations $(\widehat{S}=5)$

Real Data Example: Estimated Subpopulations $(\widehat{S}=5)$

Wintertime ENSO Patterns

Real Data Example: Estimated Subpopulations and ENSO

Subpopulation [#(units)]	Corresponding ENSO Pattern		
Red [41] and Blue [132]	Drier area in La Niña		
Green [79]	Transition between wetter and drier in El Niño		
Purple [81]	Drier area in El Niño		

Orange [11] subpopulation is particularly curious cases...

■ Extreme weather?

Real Data Example: THEM Estimates

Subpopulation	Sı				
$Color\; [\#(units)]$	$\widehat{m{lpha}}_{Intercept}$	$\widehat{lpha}_{ t PCPN}$	\widehat{lpha}_{ZNDX}		
Red [41]	64.97 (0.1320)	$-0.37 \; (0.0952)$	$-0.07 \; (0.0954)$		
Blue [132]	$49.53 \ (0.0714)$	$0.85 \ (0.0539)$	$-1.51 \ (0.0531)$		
Green [79]	$35.32\ (0.0891)$	$5.44\ (0.0698)$	$-4.05 \ (0.0682)$		
Purple [81]	$24.74\ (0.0926)$	$7.28 \; (0.0686)$	$-5.16 \ (0.0675)$		
Orange [11]	$9.90\ (0.3232)$	$9.14\ (0.1932)$	$-6.54 \ (0.1864)$		
Common Effects					
$\widehat{oldsymbol{eta}}_{Summer}$	$\widehat{oldsymbol{eta}}_{Fall}$	$\widehat{oldsymbol{eta}}_{Winter}$	$\widehat{oldsymbol{eta}}_{PDSI}$	$\widehat{oldsymbol{eta}}_{PHDI}$	
18.26 (0.0261)	4.06 (0.0258)	$-15.12 \ (0.0271)$	0.18 (0.0098)	0.20 (0.0084)	

Selected References

- Liu, D., Liu, R. Y., and Xie, M. (2015), "Multivariate Meta-Analysis of Heterogeneous Studies Using Only Summary Statistics: Efficiency and Robustness," *Journal of the American Statistical Association*, 110, 326–340.
- Wang, H., Li, B., and Leng, C. (2009), "Shrinkage Tuning Parameter Selection With A Diverging Number of Parameters," *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 71. 671–683.

Thank you for your attention!

Backup Slides

4 Theorems

5 Supplemental for Real Data Example

Equivalence to the Full-Data Estimator - Theorem 2.1 in main paper

Theorem (Equivalence to the Full-Data Estimator)

$$Q_N^{\text{CD}}(\boldsymbol{\beta}, \boldsymbol{\Theta}) - Q_N(\boldsymbol{\beta}, \boldsymbol{\Theta}) = constant.$$

$$\bullet \begin{pmatrix} \widehat{\boldsymbol{\beta}}_{\mathrm{CD}}(\lambda) \\ \widehat{\boldsymbol{\Theta}}_{\mathrm{CD}}(\lambda) \end{pmatrix} = \begin{pmatrix} \widehat{\boldsymbol{\beta}}(\lambda) \\ \widehat{\boldsymbol{\Theta}}(\lambda) \end{pmatrix} \text{ is a straightforward consequence}$$

◀ Return to Theoretical Guarantees

Properties of Oracle Estimator - Theorem 4.1 in main paper

$$g_{\min} = \min_{1 \leq s \leq S} \sum_{i \in \mathsf{subpop}(s)} n_i$$
 denotes the minimum sub-sample size

Theorem (Properties of the Oracle Estimator)

Suppose regularity conditions hold. If $g_{\min} \gg N^{3/4}(p+Sq)^{1/2}$, the oracle estimator is consistent and possesses asymptotic normality. Recall that p and q are parameter dimensions of β and θ_i , respectively.

- The above nice properties hold if
 - $\blacksquare g_{\min}$ diverges fast enough $\Rightarrow S$ cannot grow too fast
 - For example, (S, p, q) must satisfy $S\sqrt{p + Sq} = o(N^{1/4})$
 - Moreover, $S = o(N^{1/6})$ if p and q are fixed

Oracle Property of the CD Fusion Estimator - Theorem 4.2 in main paper

Theorem (Oracle Property)

Suppose conditions in Theorem 2 and an additional minimal signal condition on

$$\min_{s \neq s'} \| \boldsymbol{\alpha}_s - \boldsymbol{\alpha}_{s'} \|$$
 hold, then there exists a local minimizer $\begin{pmatrix} \widehat{\boldsymbol{\beta}}(\lambda) \\ \widehat{\boldsymbol{\Theta}}(\lambda) \end{pmatrix}$ of the objective function

 $Q_N^{ ext{CD}}(oldsymbol{eta},oldsymbol{\Theta})$ satisfying

$$P\left(\begin{pmatrix}\widehat{\boldsymbol{\beta}}(\lambda)\\\widehat{\boldsymbol{\Theta}}(\lambda)\end{pmatrix} = \begin{pmatrix}\widehat{\boldsymbol{\beta}}_{\mathrm{OR}}\\\widehat{\boldsymbol{\Theta}}_{\mathrm{OR}}\end{pmatrix}\right) \to 1.$$

 $\qquad \qquad \left(\begin{array}{c} \widehat{\boldsymbol{\beta}}(\lambda) \\ \widehat{\boldsymbol{\alpha}}(\lambda) \end{array} \right) \text{ possesses the same asymptotic distribution as } \left(\begin{array}{c} \widehat{\boldsymbol{\beta}}_{\mathrm{OR}} \\ \widehat{\boldsymbol{\Theta}}_{\mathrm{OR}} \end{array} \right)$

A Between to Therentical Comments

- To use GLS, we need to determine heterogeneous effects through observing the kernel densities of the OLS estimates
- Intuitively, the distributions of heterogeneous effects are likely to form a multimodal or wide-spread shapes
- Kernel densities of the 344 OLS estimates obtained from the climate divisions

