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Mutual Transfer Learning?

Data from a new domain (labeled or unlabeled) are too limited.

Transfer learning: use abundant data from a source domain to improve the learning

performance (including prediction and inference) for a target domain.

Typically, the target and the source domains are known and �xed.

In this paper, every data domain could potentially be the target of interest, and it could also

be a useful source to help the learning in other data domains - mutual transfer learning.
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What makes it interesting?

Given a target domain, not every domain can be a successful source; only data sets that are

similar enough to be thought as from the same population are useful sources for each other

Suggests a mutual learnability structure

How to identify useful sources?

A con�dence distribution (CD) fusion approach is proposed to recover such mutual

learnability relation in the transfer learning regime

Achieves the same oracle statistical inferential accuracy as if the true mutual learnability

structure were known.

Implemented in an e�cient parallel fashion to deal with large-scale data.
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Big Climate Data

Figure: U.S. average temperature map in October, 2016.

503,616 monthly observations from 344 climate divisions (data units) from January 1895 to
December 2016
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Big Data with Two-Layer Heterogeneity

Big Data typically consists of multiple datasets (�data units�) that are collected in di�erent time

periods, at di�erent locations and using di�erent approaches
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Two-layer heterogeneity:

1st layer: Subpopulation heterogeneity

2nd layer: Within-subpopulation heterogeneity

(Units are still di�erent within subpopulations)
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In this work, we propose a Mutual Transfer Learning (MTL) model

Goals:

Mutual learnability structure recovery (which domains are useful?)

The best possible statistical estimation and inference

Scalable for massive data

Model:

MTL is based on linear mixed-e�ects model (LMM) using regression as examples

MTL can be easily generalized to other response data types

Method:

Con�dence distribution (CD) fusion approach
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Outline

1 Statistical Model and Method

Two-Layer Heterogeneity Model

CD Fusion Approach

2 Theoretical Guarantees

3 Numerical Results
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MTL: Unit Level

LMM for the i-th data unit

in the s-th subpopulation

yi = xi β + zi ( θi + ui ) + εi
ni × 1 ni × p ni × q

β ∈ Rp is the coe�cients for the global feature vector xi

θi ∈ Rq is the coe�cients for heterogeneous feature vector zi

Assume θi ≡ αs if unit i belongs to subpopulation s
⇒ Need to reveal learnability structure

ui is the unit-speci�c random e�ect with E[ui] = 0 and Cov(ui) = σ2uI

Within-subpopulation heterogeneity

εi is the error vector with E[εi] = 0 and Cov(εi) = σ2εI
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MTL: Subpopulation Level

LMM for the i-th data unit in the s-th subpopulation

yi = xi β + zi ( αs + ui ) + εi
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THEM: Matrix Form

Matrix form with M data units

coming from S subpopulations (oracle)

(N :=
∑M

i=1 ni)

Y = X β + Z ( Θ + U ) + E y1...
yM

 =

 x1

...
xM

 β +

z1 . . .

zM

 (

 θ1...
θM

 +

 u1

...
uM

 ) +

 ε1...
εM


N × 1 N × p N ×Mq Mq × 1

Exists an (unknown) label matrix AMq×Sq such that Θ = Aα with α =

α1
...

αS


Sq×1

θi ≡ αs if unit i belongs to subpopulation s
Only S di�erent values of θi's
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A Naive Full-Data Estimator

(
β̂(λ)

Θ̂(λ)

)
= argmin

β∈Rp,Θ∈RMq

QN (β,Θ) where

QN (β,Θ) =

{
1

2

M∑
i=1

(yi − xiβ − ziθi)>Wi(yi − xiβ − ziθi)︸ ︷︷ ︸
generalized least squares (GLS) based on full data

+
∑

1≤i<j≤M
pγ (‖θi − θj‖ ;λ)︸ ︷︷ ︸

pairwise concave fusion penalty

}

Wi = Cov(yi|xi, zi)−1 =
(
σ2εIni + σ2uziz

>
i

)−1
λ > 0 is a tuning parameter

γ > 0 determines the concavity of the penalty
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Concave Penalty Function pγ(t;λ)
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Truncated Lasso penalty

In this graph,

λ = 1

γ = 3.7 for MCP and SCAD and γ = 1.85 for TLP

11 / 31



Concave Penalty Function pγ(t;λ)

0 1 2 3 4 5 6

t

0

1

2

3

4

5

6

p γ
(t

;λ
)

MCP SCAD TLP L1

Truncated Lasso penalty

In our analysis,

λ > 0 is chosen by modi�ed BIC (Wang et al., 2009)

γ = 3.7 for MCP and SCAD and γ = 1.85 for TLP

11 / 31



Computation Barrier

QN (β,Θ) =

{
1

2

M∑
i=1

(yi − xiβ − ziθi)>Wi(yi − xiβ − ziθi) +
∑

1≤i<j≤M
pγ (‖θi − θj‖ ;λ)

}

Replace it using the CD approach of Liu et al. (2015)

to combine unit GLS estimates

Communication cost: each local machine passes

an ni × (p+ q + 1) data matrix (yi,xi, zi) and
an ni × ni weight matrix Wi

to a centralized computer node Communication cost for CD fusion

12 / 31



Computation Barrier

QN (β,Θ) =

{
1

2

M∑
i=1

(yi − xiβ − ziθi)>Wi(yi − xiβ − ziθi) +
∑

1≤i<j≤M
pγ (‖θi − θj‖ ;λ)

}
Replace it using the CD approach of Liu et al. (2015)

to combine unit GLS estimates

Communication cost: each local machine passes

an ni × (p+ q + 1) data matrix (yi,xi, zi) and
an ni × ni weight matrix Wi

to a centralized computer node Communication cost for CD fusion

12 / 31



Unit GLS Estimates

Unit GLS estimates are de�ned as

(
β̂i
θ̂i

)
=
[
(xi, zi)

>Wi(xi, zi)
]−1

(xi, zi)
>Wiyi

D
=⇒ N

(β0

θi,0

)
,
[
(xi, zi)

>Wi(xi, zi)
]−1

︸ ︷︷ ︸
Σi


where Wi = Cov(yi|xi, zi)−1 =

(
σ2εIni + σ2uziz

>
i

)−1
σ2
u and σ2

ε can be consistently estimated through restricted maximum likelihood (REML) method.
For simplicity, we assume σ2

u and σ2
ε (and thus Wi's) are known

CD density can be assigned by switching the roles of estimator and parameter of interest,

i.e., de�ne the unit CD density by

hi(β,θi) := density of N
((

β̂i
θ̂i

)
,Σi

)
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CD Fusion Approach: Combined CD Density

Following Liu et al. (2015), the combined CD density is de�ned by

h(β,Θ) :=

M∏
i=1

hi(β,θi)

By omitting additive constant terms, we have

− log h(β,Θ) ∝
M∑
i=1

(
β̂i − β
θ̂i − θi

)>
Σ−1i

(
β̂i − β
θ̂i − θi

)
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CD Fusion Estimator

(
β̂CD(λ)

Θ̂CD(λ)

)
= argmin

β∈Rp,Θ∈RMq

QCD
N (β,Θ) where

QCD
N (β,Θ) = − log h(β,Θ)︸ ︷︷ ︸

Combined
CD density

+
∑

1≤i<j≤M
pγ (‖θi − θj‖ ;λ)︸ ︷︷ ︸

pairwise concave fusion penalty

Communication cost: each local machine passes

a (p+ q)-vector
(
β̂>i , θ̂

>
i

)>
and

a (p+ q)× (p+ q) matrix Σi

to a centralized computer node Communication cost for the full-data approach
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Oracle Estimator

The oracle estimator of (β,α) is de�ned by the full-data GLS estimator given the true

subpopulations(
β̂OR

α̂OR

)
= argmin

β∈Rp,α∈RSq

1

2
(Y −Xβ −ZAα)>W (Y −Xβ −ZAα)

=
[
(X,ZA)>W (X,ZA)

]−1
(X,ZA)>WY

where W = diag (W1, . . . ,WM )

A is unknown in reality

Not computable with massive sample size
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Theoretical Guarantees
Regularity conditions on

Random design matrices (sub-Gaussian tails and eigenvalue restrictions)

Sub-Gaussian tails for random e�ects U and noises E
Concave fusion penalty (satis�ed by MCP, SCAD and TLP)

CD Fusion
Estimator

= Full-Data
Estimator

≈ Oracle
Estimator

Nice properties
Theorem 4.1

(Given S does not grow too fast)
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CD Fusion
Estimator

= Full-Data
Estimator

≈ Oracle
Estimator

Nice properties
Theorem 4.1

(Given S does not grow too fast)

Exact
Theorem 2.1

Asymptotic equivalence
Theorem 4.2

(Given a minimal signal condition)
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Revisiting Our Goals

Mutual learnability structure recovery

Sol: Pairwise fusion penalty to fuse unit level βi's
Theoretical guarantees, provided that S does not grow too fast and a minimal signal

condition

Accurate estimation and inference

Sol: Achieves the oracle level

Computable approach for massive data

Sol: CD approach to combine unit estimates

ADMM with parallel computing
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Numerical Results

Summary of simulation studies:

The CD fusion approach behaves desirably with MCP, SCAD and TLP

MCP is recommended in general

Decent and stable performance

Fast (only slightly slower than SCAD)

SCAD and TLP are unstable in some cases

L1 �fails� in all cases
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Real Data Example: NOAA1's nClimDiv

Time period chosen: January 1895 to December 2016

N = 503,616 observations from M = 344 climate divisions (data units)

Response: monthly average temperature

8 candidate covariates How to choose global features

p = 5 covariates as global e�ects β

3 dummy variables for seasonal e�ects: Summer, Fall and Winter

Palmer Drought Severity Index (PSDI)

Palmer Hydrological Drought Index (PHDI)

q = 3 covariates as heterogeneous e�ects θi's

Intercept

Precipitation (PCPN)

Palmer Z Index (ZNDX)

Only MCP is used in analysis

1National Oceanic and Atmospheric Administration
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Real Data Example: Estimated Subpopulations (Ŝ = 5)

Generally follows a geographical pattern in the sense that adjacent divisions are mostly

grouped together

Similar to the El Niño-Southern Oscillation (ENSO) winter patterns
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Wintertime ENSO Patterns
La Niña Winter Pattern

El Niño Winter Pattern

22 / 31



Real Data Example: Estimated Subpopulations and ENSO

Subpopulation [#(units)] Corresponding ENSO Pattern

Red [41] and Blue [132] Drier area in La Niña

Green [79] Transition between wetter and drier in El Niño

Purple [81] Drier area in El Niño

Orange [11] subpopulation is particularly curious cases...

Extreme weather?
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Real Data Example: THEM Estimates

Subpopulation Subpopulation E�ects

Color [#(units)] α̂Intercept α̂PCPN α̂ZNDX

Red [41] 64.97 (0.1320) −0.37 (0.0952) −0.07 (0.0954)

Blue [132] 49.53 (0.0714) 0.85 (0.0539) −1.51 (0.0531)

Green [79] 35.32 (0.0891) 5.44 (0.0698) −4.05 (0.0682)

Purple [81] 24.74 (0.0926) 7.28 (0.0686) −5.16 (0.0675)

Orange [11] 9.90 (0.3232) 9.14 (0.1932) −6.54 (0.1864)

Common E�ects

β̂Summer β̂Fall β̂Winter β̂PDSI β̂PHDI

18.26 (0.0261) 4.06 (0.0258) −15.12 (0.0271) 0.18 (0.0098) 0.20 (0.0084)
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Thank you for your attention!
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Equivalence to the Full-Data Estimator - Theorem 2.1 in main paper

Theorem (Equivalence to the Full-Data Estimator)

QCD
N (β,Θ)−QN (β,Θ) = constant .

(
β̂CD(λ)

Θ̂CD(λ)

)
=

(
β̂(λ)

Θ̂(λ)

)
is a straightforward consequence

Return to Theoretical Guarantees
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Properties of Oracle Estimator - Theorem 4.1 in main paper

gmin = min
1≤s≤S

∑
i∈subpop s

ni denotes the minimum sub-sample size

Theorem (Properties of the Oracle Estimator)

Suppose regularity conditions hold. If gmin � N3/4(p+ Sq)1/2, the oracle estimator is

consistent and possesses asymptotic normality. Recall that p and q are parameter dimensions of

β and θi, respectively.

The above nice properties hold if

gmin diverges fast enough ⇒ S cannot grow too fast

For example, (S, p, q) must satisfy S
√
p+ Sq = o(N1/4)

Moreover, S = o(N1/6) if p and q are �xed

Return to Theoretical Guarantees

29 / 31



Oracle Property of the CD Fusion Estimator - Theorem 4.2 in main paper

Theorem (Oracle Property)

Suppose conditions in Theorem 2 and an additional minimal signal condition on

mins 6=s′ ‖αs −αs′‖ hold, then there exists a local minimizer

(
β̂(λ)

Θ̂(λ)

)
of the objective function

QCD
N (β,Θ) satisfying

P

((
β̂(λ)

Θ̂(λ)

)
=

(
β̂OR

Θ̂OR

))
→ 1.

(
β̂(λ)
α̂(λ)

)
possesses the same asymptotic distribution as

(
β̂OR

Θ̂OR

)
Return to Theoretical Guarantees
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To use GLS, we need to determine heterogeneous e�ects through observing the kernel

densities of the OLS estimates

Intuitively, the distributions of heterogeneous e�ects are likely to form a multimodal or

wide-spread shapes

Kernel densities of the 344 OLS estimates obtained from the climate divisions
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