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Mutual Transfer Learning?

m Data from a new domain (labeled or unlabeled) are too limited.

m Transfer learning: use abundant data from a source domain to improve the learning
performance (including prediction and inference) for a target domain.
m Typically, the target and the source domains are known and fixed.

m In this paper, every data domain could potentially be the target of interest, and it could also
be a useful source to help the learning in other data domains - mutual transfer learning.
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What makes it interesting?

m Given a target domain, not every domain can be a successful source; only data sets that are
similar enough to be thought as from the same population are useful sources for each other

m Suggests a mutual learnability structure
m How to identify useful sources?

m A confidence distribution (CD) fusion approach is proposed to recover such mutual
learnability relation in the transfer learning regime
m Achieves the same oracle statistical inferential accuracy as if the true mutual learnability
structure were known.
m Implemented in an efficient parallel fashion to deal with large-scale data.
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Big Climate Data

©@

October 2016

<« cool warm »

Figure: U.S. average temperature map in October, 2016.

m 503,616 monthly observations from 344 climate divisions (data units) from January 1895 to
December 2016
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Big Data with Two-Layer Heterogeneity

Big Data typically consists of multiple datasets (“data units”) that are collected in different time
periods, at different locations and using different approaches
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Big Data with Two-Layer Heterogeneity

Big Data typically consists of multiple datasets (“data units”) that are collected in different time
periods, at different locations and using different approaches

Two-layer heterogeneity:

m 1 |ayer: Subpopulation heterogeneity

m 2" Jayer: Within-subpopulation heterogeneity
(Units are still different within subpopulations)
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In this work, we propose a Mutual Transfer Learning (MTL) model
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m Scalable for massive data

Model:
m MTL is based on linear mixed-effects model (LMM) using regression as examples

m MTL can be easily generalized to other response data types

Method:
m Confidence distribution (CD) fusion approach
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Outline

Statistical Model and Method
m Two-Layer Heterogeneity Model
m CD Fusion Approach

Theoretical Guarantees

Numerical Results
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MTL: Unit Level

LMM for the i-th data unit

Y; = xTr; ,@ + zZ; (0i+ui) + &
nix1l mn;Xp n; X q

m 3 € RP is the coefficients for the global feature vector x;

m 0; € R? is the coefficients for heterogeneous feature vector z;

m wu; is the unit-specific random effect with E[u;] = 0 and Cov(u;) = 021

m ¢; is the error vector with E[e;] = 0 and Cov(e;) = 021
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MTL: Subpopulation Level

LMM for the i-th data unit in the s-th subpopulation

Yi = x B + zi (as+wu) + &
nix1l n;xXp n; X q

m 0; € R? is the coefficients for heterogeneous feature vector z;

m Assume 0; = « if unit i belongs to subpopulation s
= Need to reveal learnability structure

m wu; is the unit-specific random effect with E[u;] = 0 and Cov(u;) = 021
m Within-subpopulation heterogeneity
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THEM: Matrix Form

Matrix form with M data units

M
(N =3 0 i)
Y = X B8+ Z (. ® + U )+ €&
Y1 1 zZ1 0, Ui €1
= B+ ( + ) +
YMm T\ ZM Oy wUpg EMm
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THEM: Matrix Form

Matrix form with M data units coming from S subpopulations (oracle)
M
(N =225 na)

Y = X B8+ Z (. ® + U )+ €&
U1 L1 zZ1 U €1
=] B+ (Ao +| 1 |)+
Ym M ZM un EM

N x1 N xXp N x Mg Mg x1
aq

m Exists an (unknown) label matrix A /4«5, such that ® = Aa with o =

as Sgx1
m 0; = o if unit ¢ belongs to subpopulation s
m Only S different values of 6;'s
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A Naive Full-Data Estimator

BN _ .
(@()\)>_ argmin  Qn (8, ©) where

BERP OcRMa

LM
Qn(B,9) :{ 5 Y (Wi — @B —260,) Wiy —ziB—z0)+ Y p, (|6 —6;];)) }
i=1 1<i<j<M

generalized least squares (GLS) based on full data pairwise concave fusion penalty

B -1
] m = COV(yi|ZEz’,Zi) e (O'EQInZ + O',L%ZiZlT)

m )\ > 0 is a tuning parameter

m v > 0 determines the concavity of the penalty
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Concave Penalty Function p,(t; \)

Truncated Lasso penalty

|

—— MCP === SCAD  —:= TLP - Ly

Pyt A)

-

In this graph,
E =1
m v = 3.7 for MCP and SCAD and v = 1.85 for TLP
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Concave Penalty Function p,(t; \)

Truncated Lasso penalty

|

— MCP === SCAD == TLP  =wen L

py(t; A)

In our analysis,

m )\ > 0 is chosen by modified BIC (Wang et al., 2009)
m v = 3.7 for MCP and SCAD and v = 1.85 for TLP
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Computation Barrier

M
Qn(B,O) Z{; D (yi—xi — 2:60;) Wiy — @B —2z:0) + > py (10— 04[5 ) }
i=1 1<i<j<M

m Communication cost: each local machine passes
m an n; X (p+ q+ 1) data matrix (y;, x;, 2;) and
m an n; X n; weight matrix W;
to a centralized computer node
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Computation Barrier

Replace it using the CD approach of Liu et al. (2015)
to combine unit GLS estimates

T

M
Qn(B,O) Z{; Y (yi—miB—z0,) Wilyi —ziB— 20+ Y py(16:— 655 ) }
i=1 1<i<j<M

m Communication cost: each local machine passes
m an n; X (p+ ¢+ 1) data matrix (y;, x;, z;) and
m an n; X n; weight matrix W;
to a centralized computer node
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Unit GLS Estimates

m Unit GLS estimates are defined as

<@> = [(wz‘jzz‘)TW’z‘(wszi)]_l (@i, 1) Wiy = N <BO> , {(wmzz‘)Tm(%azi) -
0; )

3

_ -1
where W; = Cov(y;|z;, 2;) 1 = (UgIm + Uﬁziz;r)
m 02 and o2 can be consistently estimated through restricted maximum likelihood (REML) method.
m For simplicity, we assume o2 and o2 (and thus W;'s) are known
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CD Fusion Approach: Unit CD Density

m Unit GLS estimates are defined as

<@l> = [(iﬂz‘jzz‘)TW/z‘(wuZi)]_l (i, 2i) Wiy 2N <B0> ) [(wz‘,zz‘)Tm(%,Zi) -
0; 00

3

_ -1

where W; = Cov(y;|z;, 2;) 1 = (UgIm + Uﬁziz;r)

m 02 and o2 can be consistently estimated through restricted maximum likelihood (REML) method.
m For simplicity, we assume o2 and o2 (and thus W;'s) are known

m CD density can be assigned by switching the roles of estimator and parameter of interest,
i.e., define the unit CD density by

hi(83,6;) := density of A/ <<§L> ,27;>
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CD Fusion Approach: Combined CD Density

m Following Liu et al. (2015), the combined CD density is defined by

M
h(B,0) =[] (8,6
i=1

14 /31



CD Fusion Approach: Combined CD Density

m Following Liu et al. (2015), the combined CD density is defined by

M
h(B,0) =[] (8,6
i=1

m By omitting additive constant terms, we have

M —~ T —~
—logh(3,0) oc Y (g:g) st (g:g)

=1
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CD Fusion Estimator

QCD(A) = argmin Q](E,D(,B,Q) where
Ocp(N) BERP @CRMa
> py (16— 650150

P(B8,0) = —log h(B,0) +
" 1<i<j<M

Combined
CD density . .
pairwise concave fusion penalty
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CD Fusion Estimator

Ocp(N) BERP @CRMa

(@CD(A)> = argmin Q$P (8, ®) where
QF°(8,0) = —log h(B,0) + > p, ([6; - 6;] ;)
T <igj<M

Combined
CD density

pairwise concave fusion penalty

m Communication cost: each local machine passes
m a (p+ q)-vector (,@ZT,@T)T and
ma(p+q) x(p+q) matrix X;
to a centralized computer node
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Oracle Estimator

The oracle estimator of (3, ) is defined by the full-data GLS estimator given the true
subpopulations

(90R> — argmin (Y - XB- ZAa) W(Y - X8 - ZAa)
QOR

BERP, a€RSY

-1
:[(X,ZA)TW(X,ZA) (X,ZA) WY

where W = diag (W71,..., Wy)
m A is unknown in reality

m Not computable with massive sample size
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Theoretical Guarantees
Regularity conditions on
m Random design matrices (sub-Gaussian tails and eigenvalue restrictions)

m Sub-Gaussian tails for random effects U and noises €
m Concave fusion penalty (satisfied by MCP, SCAD and TLP)
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Theoretical Guarantees
Regularity conditions on
m Random design matrices (sub-Gaussian tails and eigenvalue restrictions)

m Sub-Gaussian tails for random effects U and noises €
m Concave fusion penalty (satisfied by MCP, SCAD and TLP)

Nice properties

(Given S does not grow too fast)

1
CD Fusion Full-Data - Oracle
Estimator I Estimator I Estimator
Exact Asymptotic equivalence

(Given a minimal signal condition)
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Revisiting Our Goals

m Mutual learnability structure recovery

Sol: Pairwise fusion penalty to fuse unit level 3;'s
Theoretical guarantees, provided that S does not grow too fast and a minimal signal
condition
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Revisiting Our Goals

m Mutual learnability structure recovery

Sol: Pairwise fusion penalty to fuse unit level 3;'s
Theoretical guarantees, provided that S does not grow too fast and a minimal signal
condition

m Accurate estimation and inference
Sol: Achieves the oracle level

m Computable approach for massive data

Sol: CD approach to combine unit estimates
ADMM with parallel computing
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Numerical Results

Summary of simulation studies:
m The CD fusion approach behaves desirably with MCP, SCAD and TLP
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Numerical Results

Summary of simulation studies:
m The CD fusion approach behaves desirably with MCP, SCAD and TLP
m MCP is recommended in general

m Decent and stable performance
m Fast (only slightly slower than SCAD)

m SCAD and TLP are unstable in some cases

m L “fails” in all cases
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Real Data Example: NOAA!'s nClimDiv

m Time period chosen: January 1895 to December 2016
m N = 503,616 observations from M = 344 climate divisions (data units)
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Real Data Example: NOAA!'s nClimDiv

m Time period chosen: January 1895 to December 2016
m N = 503,616 observations from M = 344 climate divisions (data units)
m Response: monthly average temperature
m 8 candidate covariates
m p = 5 covariates as global effects 3

m 3 dummy variables for seasonal effects: Summer, Fall and Winter
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Real Data Example: NOAA!'s nClimDiv

m Time period chosen: January 1895 to December 2016
m N = 503,616 observations from M = 344 climate divisions (data units)
m Response: monthly average temperature
m 8 candidate covariates
m p = 5 covariates as global effects 3

m 3 dummy variables for seasonal effects: Summer, Fall and Winter
m Palmer Drought Severity Index (PSDI)
m Palmer Hydrological Drought Index (PHDI)
m ¢ = 3 covariates as heterogeneous effects 0;'s
m Intercept
m Precipitation (PCPN)
m Palmer Z Index (ZNDX)
m Only MCP is used in analysis

"National Oceanic and Atmospheric Administration
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Wintertime ENSO Patterns

La Nifia Winter Pattern

A A IR

Polar Jet Stream

blocking
El Nifio Winter Pattern e

S RS W

extended
Pacific Jet Stream,
amplified storm
“e track
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Real Data Example: Estimated Subpopulations and ENSO

Subpopulation [#(units)] Corresponding ENSO Pattern

Red [41] and Blue [132]  Drier area in La Nifia

Green [79] Transition between wetter and drier in El Nifio
Purple [81] Drier area in El Nifio

[11] subpopulation is particularly curious cases...

m Extreme weather?
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Real Data Example: THEM Estimates

Subpopulation
Color [#(units)]

Subpopulation Effects

Q|ntercept QPpPCPN QZNDX

Red [41] 64.97 (0.1320)  —0.37 (0.0952)  —0.07 (0.0954)
Blue [132] 49.53 (0.0714)  0.85 (0.0539)  —1.51 (0.0531)
Green [79] 35.32 (0.0891)  5.44 (0.0698)  —4.05 (0.0682)
Purple [81] 24.74 (0.0926)  7.28 (0.0686)  —5.16 (0.0675)
11] 9.90 (0.3232)  9.14 (0.1932)  —6.54 (0.1864)
Common Effects
Bsummer Brai Buwinter Brosi Behoi

18.26 (0.0261)

4.06 (0.0258) —15.12 (0.0271)  0.18 (0.0098)

0.20 (0.0084)
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Thank you for your attention!
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Equivalence to the Full-Data Estimator - Theorem 2.1 in main paper

Theorem (Equivalence to the Full-Data Estimator) }

P(B,0) — Qn(B,0) = constant.

D)

[ ’QCD()\) = ,\()‘) is a straightforward consequence
Ocp(A) O\
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Properties of Oracle Estimator - Theorem 4.1 in main paper

Jmin = min E n; denotes the minimum sub-sample size
1<s<S .
i€subpop s

Theorem (Properties of the Oracle Estimator)

Suppose regularity conditions hold. If guin > N3/*(p+ Sq)'/2, the oracle estimator is

consistent and possesses asymptotic normality. Recall that p and q are parameter dimensions of
B3 and 0;, respectively.

m The above nice properties hold if

® gmin diverges fast enough = S cannot grow too fast

= For example, (S, p,q) must satisfy Sv/p + Sq = o(N/4)
= Moreover, S = o(N'/6) if p and ¢ are fixed
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Oracle Property of the CD Fusion Estimator - Theorem 4.2 in main paper

Theorem (Oracle Property)

Suppose conditions in Theorem 2 and an additional minimal signal condition on

. . B o .
mingy ||os — oy || hold, then there exists a local minimizer (’Q( )) of the objective function

O\

((8)-()
O\ Oor

SP(B,©) satistying

m (é()\)) possesses the same asymptotic distribution as @OR
a()) Oor
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m To use GLS, we need to determine heterogeneous effects through observing the kernel

densities of the OLS estimates

m Intuitively, the distributions of heterogeneous effects are likely to form a multimodal or
wide-spread shapes
m Kernel densities of the 344 OLS estimates obtained from the climate divisions
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