
Learning and Evaluating
Contextual Embedding of

Source Code
Aditya Kanade 1 2, Petros Maniatis 2, Gogul Balakrishnan 2,

Kensen Shi 2

1 Indian Institute of Science
2 Google Brain

General-Purpose Representations of Source Code
● Success of learned representations (e.g., ELMo, GPT, BERT, etc.) in NLU

● Source code is a formal description of an executable task.

● Source code is a means to communicate developer intent.

○ Meaningful identifier names

○ Natural-language documentation

○ Convey a lot of semantic information

● Could the following code be buggy?

number_of_batches = batch_size / number_of_examples

2

Can we exploit characteristics of source code to learn general-purpose
representations that can be used effectively in downstream tasks?

Pre-train a deep bidirectional Transformer encoder from unlabeled code.

Use the pre-training objectives, masked language modeling (MLM) and
next-sentence prediction (NSP), popularized by BERT.

Design and evaluate on a new benchmark of six code-understanding tasks --
including five classification and one multi-headed pointer prediction task.

*BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

CuBERT: Code Understanding BERT*

3

https://arxiv.org/abs/1810.04805

Experimental Results
Q1: How do contextual embeddings compare against word embeddings?

CuBERT outperforms BiLSTM models initialized with pre-trained
source-code-specific Word2Vec embeddings by +2.9% to +22%.

Q2: Is Transformer (without pre-training) all you need?

CuBERT outperforms Transformers trained from scratch by +5.8% to +23%.

Q3: What is the effect of reduced supervision?

CuBERT achieves results comparable to the baselines with 1/3rd or 2/3rd of
training data, and within 2 or 10 fine-tuning epochs (the default being 20 epochs).

4

Experimental Results
Q4: How does the context length affect CuBERT’s performance?

Increasing context length (128 -> 256 -> 512) tends to improve the performance.

Q5: How does CuBERT perform on the more complex task of predicting a
two-headed pointer in comparison to SOTA approaches?

CuBERT achieves +33% (absolute) localization+repair accuracy in comparison to
(Vasic et al. 2019) and +6.2% (absolute) in comparison to (Hellendoorn et al.,
2020) on the corresponding datasets.

5

https://openreview.net/pdf?id=ByloJ20qtm
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr

Experimental Setup

6

GitHub
Python files

6.6 Million files
2 Billion words

Program
vocabulary

Subword
vocabulary

Pre-training
corpus

10.2 Million words

Pre-trained
CuBERT model

50K subwords

Layers=24
Hidden dim=1024
Attention heads=16
Total Parameters=340MInput example

Task-specific
prediction layer

Output label

New Benchmark of Code-understanding Tasks
Built using the ETH Py150 corpus (Raychev et al. 2016).

Motivated in part by code-understanding tasks studied in the literature.

● Swapped operands (binary classification) (Pradel & Sen 2018)
● Wrong binary operator (binary classification) (Pradel & Sen 2018)
● Exception-type (multi-class classification)
● Function-docstring mismatch (sentence-pair classification) (Louis et al. (2018)
● Variable-misuse (binary classification) (Allamanis et al. 2018)
● Variable-misuse localization and repair (multi-headed pointer prediction)

(Vasic et al. 2019)

7

https://dl.acm.org/doi/10.1145/2983990.2984041
https://dl.acm.org/doi/10.1145/3276517
https://dl.acm.org/doi/10.1145/3276517
https://arxiv.org/pdf/1806.04616.pdf
https://openreview.net/pdf?id=BJOFETxR-
https://openreview.net/pdf?id=ByloJ20qtm

Correct operator: <

Example of Wrong Binary
Operator Classification

def__gt__(self,other):
 if isinstance(other,int) and other==0:
 return self.get_value()>0
 return other is not self

8
Visualization of attention weights at the last layer

9

Expected label: OSError

Example of Exception Type Classification

try:

 subprocess.call(hook_value)

 return jsonify(success=True), 200

except __HOLE__ as e:

 return jsonify(success=False,

 error=str(e)), 400

Multi-class classification with 20 top exception types as class labels.

10

Example of Function Docstring Classification

Sentence #1:

'Get form initial data.'

Sentence #2:

def __add__(self, cov):

 return SumOfKernel(self, cov)

Sentence-pair classification problem

Variable event is used

incorrectly instead of self.

Example of Variable Misuse Tasks

def on_resize(self, event):
 event.apply_zoom()

11

Localization
pointer

Repair
pointer

Dealing with Code Duplicates
Open-source projects are replete with code duplicates. This can:

● Affect the reported model performance.
● Result in information leak between pre-training and fine-tuning corpora.
● Bias pre-training towards duplicated code.

Remedy code duplication by:

● Deduplicating the fine-tuning corpus in the fashion of Allamanis (2018) using
Jaccard similarity over sets/multi-sets of tokens.

● Remove files with duplicates in the fine-tuning corpus from pre-training.
● Deduplicate the pre-training corpus.

12

http://arxiv.org/abs/1812.06469

Related Work
Representation learning for programs

● Structured representations like abstract syntax trees (Alon et al., 2019) and

data-flow/control-flow information (Allamanis et al., 2018; Hellendoorn et al.,

2020) used in specific software engineering tasks.

● An upcoming work by Feng et al. (2020) aims at solving NL-PL tasks by

pre-training a BERT model on paired NL description and code, in a

multi-lingual setting. CuBERT pre-training and fine-tuning (e.g.,

function-docstring task) also involves both code and natural language.

13

http://doi.acm.org/10.1145/3290353
https://openreview.net/pdf?id=BJOFETxR-
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
https://arxiv.org/pdf/2002.08155.pdf

Conclusions and Future Work
We present the first pre-trained contextual embedding of source code.

Our model, CuBERT, shows strong performance against baselines.

We hope that our models and benchmarks will be useful to the community.

Pre-training using structured representations of code, such as ASTs and graphs,
that encode different types of information (e.g., data-flow and control-flow) will be
an interesting future direction.

We envision more innovations on the pre-training setup, reduction in model size
and pre-training cost, and novel applications of the pre-trained models.

14

