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Examples:
» Linear regression: Z = (X,Y), L(6;Z) = (Y — X T0)?/2
» Logistic regression: Z = (X,Y), L(0;Z) = —Y X "0 +1og(1 +exp[X "0])
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Step 3: Forl=1,...,d,




Distributed framework:
Distribute N data points evenly across & machines s.t.
each machine stores n = N/k data points

» 1 master node M;
» k — 1 worker nodes Mo, M3, ... M
> Z;;: the i-th data point at machine M
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Distributed Simultaneous Inference
Step 1: Compute 0

» Can be approximated by existing efficient distributed estimation methods

Step 2: Bootstrap ¢(0.95)
» Traditional bootstrap cannot be efficiently applied in the distributed
framework

» BLB! and SDB? are computationally expensive due to repeated
resampling and not suitable for large k

IKleiner, et al. "A scalable bootstrap for massive data." JRSS-B (2014)
2Sengupta, et al. "A subsampled double bootstrap for massive data." JASA (2016)
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Question: How can we efficiently do Step 2 in a distributed manner?

Our contributions:

» We propose communication-efficient and computation-efficient distributed
bootstrap methods: k-grad and n+k-1-grad

» We prove a sufficient number of communication rounds that guarantees
statistical accuracy and efficiency
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Approximate by sample average:
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k-grad (computed at M1): €; EJ\/(O, 1) forj=1,...,k
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k-grad fails for small !

Solution: n+k-1-grad (computed at M;):
€1, €; If'g./\f(O,l) fori=1,...,nand j=2,...,k

n
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n =1

where g1 = VL(0; Zi1) computed at M;



An example algorithm: apply k-grad/n+k-1-grad with CSL estimator?
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Step 1: compute point estimator 5(7 rounds of communication)
. 0 « argmin, £1(6) at M
cfort=1,...,7do
Transmit 04~ to {M;}h_,
Compute VL1 (6%~ V) and V2L, (64 D)~" at M,
for j=2,...,kdo_
Compute VL, (8% at M;
Transmit VL, (60~ to M,
VLN (O ) e k7 v (00Y) at My
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An example algorithm: apply k-grad/n+k-1-grad with CSL estimator?

Step 1: compute point estimator 5(7 rounds of communication)
. 0 < argmin, £1(0) at M,
cfort=1,...,7do
Transmit 04~ to {M;}h_,
Compute VL1 (6V) and V2£,(8¢~)~1 at M,
for j=2,...,kdo_
Compute VL, (8% at M;
Transmit V£, (0¢~Y) to M,
Y,cN(eiH)) — k1 2}1 sz(é)(f—l)z at M
0 9= 2L, (0T IV Ly (0¢Y) at My
Step 2: bootstrap quantile ¢(0.95) (0 round of communication)
. Run k-grad/n+k-1-grad with § = 6¢~Y at M,
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Question: How many rounds of communication are sufficient?

1Jordan, et al. "Communication-efficient distributed statistical inference." JASA (2019)
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Assume n = d" and k = d"* for constants v,y > 0

Statistical efficiency: sup,¢ (g 1) IP(IVN@B = 60%)||oo < cw(a)) — a| = o(1)

Statistical accuracy: sup,¢(o,1) IP(|VN (0 — 6%)||oo < cw () —al = o(1)
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[llustration of main results for linear models:

Left: k-grad Right: n+k-1-grad

Blue areas: accuracy and efficiency are guaranteed if 7 > 70
Gray areas: accuracy and efficiency are not guaranteed

e = logy k

Yn = loggn

Yo =loggn

> Tmin /" logarithmically as &, n\,and d ~*
> Tmin,n+k-1-grad < Tmin,k-grad
> Tmin,n+k-1-grad > 1, Tmin,k-grad > 2

> i has to be large for k-grad, but not for n+k-1-grad



[llustration of main results for generalized linear models
Left: k-grad Right: n+k-1-grad
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Simulations: logistic regression, N = 216
Top left: k-grad, d =23 Top right: k-grad, d = 2°
Bottom left: n+k-1-grad, d = 22 Bottom right: n+k-1-grad, d = 2°
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Comparisons to BLB and SDB:
» Width (logistic regression, left: d = 25, right: d = 27)

Width

0.4 1
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Comparisons to BLB and SDB:
» Width (logistic regression, left: d = 25, right: d = 27)

0.4 1

Width
?‘“’ \

0 2 4 6
log, k

» Run time in seconds (linear regression, d = 27)

Methods k=2 k=2 k=2°
k-grad 0.82 0.51 0.50
n+k-1-grad 1.49 0.67 0.64
SDB 3.44 3.83 12.66

BLB 981.17 84250 1950.91




Extensions:
» To other models, e.g., graphical models
» To high-dimensional sparse models (in progress)



Thank you!



