
On Efficient Constructions of Checkpoints

Yu Chen, Zhenming Liu, Bin Ren and Xin Jin

Checkpoint for ML applications

2

def train_and_checkpoint(net, manager):
 ckpt.restore(manager.latest_checkpoint)
 if manager.latest_checkpoint:
 print("Restored from {}".format(manager.latest_checkpoint))
 else:
 print("Initializing from scratch.")

 for _ in range(50):
 example = next(iterator)
 loss = train_step(net, example, opt)
 ckpt.step.assign_add(1)
 if int(ckpt.step) % 10 == 0:
 save_path = manager.save()
 print("Saved checkpoint for step {}: {}".format(int(ckpt.step), save_path))
 print("loss {:1.2f}".format(loss.numpy()))

Save model’s state for recovery

Recovery from checkpoint

Checkpoint for ML applications

• Application errors
- Divide by zero
- Gradient explosion
- Dead activation

3

• System failures
- Power outages
- Unstable network
- Unhealthy disks

• Cloud computing
- Spot instance
- Container rescheduling

Checkpoint for ML applications

4

cp1 cp2

cp1 cp2 cp3 cp4

Failure occurs

Frequent checkpoint has less recovery cost

Checkpoint for ML applications

5

Frequent checkpointing is
costly for IO and storage

ML & System: Partial checkpoint

System: Decrease checkpoint frequency

ML & System & Information theory

How can we compress the model checkpoint?

Compression

6

• Lossless compression

• Lossy compression
– distance-based compression l2

How to find the redundant information? How to design a suitable scheme?

– Model compression

Design

7

• Design principles
– Minimize irritation to SGD
– Maximize redundancies in residual information

• Two key components
– Approximate tracking by delta-coding.
– Quantization and Huffman coding.

Approximate tracking by delta-coding.

8

… …

… …

u0 ũ0

ut−1 ũt−1

ut ũt

ũt = u0 + ∑
i≤t

δ̃i

δt = ut − ũt−1

δ̃t = f(δt)

• Two stage quantization
– Exponent-based quantization
– Priority Promotion

• Huffman coding

0.76 -0.48 0.2 0.07 0.18 0.49 0.14 0.39 0.82 0.09

0.070.76

0.82

e=-1,s=0 e=-2,s=0 e=-2,s=1 e=-3,s=0 e=-4,s=0

000

0.18

0.39

0.49 -0.48

0.14

0.2 0.09

Exponent-base Quantization

0.79 0.44 -0.48 0.17 0.08

001 010 011 100

Quantization and Huffman coding

9

Quantization and Huffman coding
• Two stage quantization

– Exponent-based quantization
– Priority Promotion

• Huffman coding

0.76 -0.48 0.2 0.07 0.18 0.49 0.14 0.39 0.82 0.09

0.79 0.44 -0.48 0

0.79 -0.48 0 0 0 0.44 0 0.44 0.79 0

000

01 10 11

10 0 10 0111011100110

Exponent-base Quantization

Priority Promotion

0.79 0.44 -0.48 0.17 0.08

001 010 011 100

00

Huffman Encoding

Checkpoint Saving

10

Design

11

• System optimization
– Asynchronous execution
– Checkpoint merging
– Huffman code table caching

Evaluation
• Models

– Logistic Regression
– LeNet-5
– AlexNet
– Matrix Factorization

• Objective
– Comparing the recover cost with previous works
– Evaluating the compression benefit brought by different approaches
– Validating the effectiveness of priority promotion
– Confirming the low overhead

• Dataset
– MNIST
– Fashion-MNIST
– Jester
– MoiveLens10M

12

Recovery cost comparison

- Outperforming SCAR by 2.88x-5.77x, and
TOPN by 2.17x-4.06x at 5% checkpoint size

- Outperforming SCAR by 1.9x-4.82x, and
TOPN by 1.52x-2.17x at 10% checkpoint size

- LC-checkpoint has more stable rework cost
as the checkpoint size decreasing

13

5.37x

Recovery cost comparison

- Outperforming SCAR by 2.88x-5.77x, and
TOPN by 2.17x-4.06x at 5% checkpoint size

- Outperforming SCAR by 1.9x-4.82x, and
TOPN by 1.52x-2.17x at 10% checkpoint size

- LC-checkpoint has more stable rework cost
as the checkpoint size decreasing

14

4.4x

Compression effect breakdown

• Exponent-based quantization
• Priority promotion
• Huffman coding

- E yields a compression ratio of 85% on average
- P brings 9.26% extra compression ratio on

average for 2-bit and 6.23% for 3-bit
- H brings 2% extra compression ratio with 2-bits

priority promotion, and 1.6% with 3-bits one
- P with smaller bits yields more benefits for H

15

85.47%

93.73%
95.87%

The effectiveness of priority promotion

• X-axis: The exponent bucket id which
to be removed from

• Y-axis: Related error calculated by
loss function, lower is better.

δm

- Smaller exponent buckets have
negligible impact to model state

- 3 buckets (2bits) and 7
buckets(3bits) can hold most of
significant bits.

Rebuild the by + ut+m ut δm

2bits 3bits

16

Overhead

Failure occurs

• Each iteration costs 91 seconds
on average

• A failure occurs at 7th iteration
• LC checkpoint saves 6 iterations

(546 seconds)
• LC checkpoint has less than 4

seconds overhead

17

6 iterations

Conclusion

– Propose an important research question: how to compress checkpoint
– Characterize a family of compression schemes for tracking learning process

– Design a lossy coding scheme to compress checkpoint
– Optimize the training systems to achieve low overhead checkpoint
– Achieve the compression rate up to 28x and recovery speedup up to 5.77x

over the state-of-the-art algorithms

Thank you for your attention!
ychen39@email.wm.edu

18

Checkpoint for ML applications

19

• Classic checkpoint mechanism
– Save model state periodically
– Partially save model state for faster recovery

• Key technical challenge
– Frequent checkpointing is costly for IO and storage

• How can we compress model checkpoint?
– Maximize the compression rate
– The scheme needs to be optimized for ML application

Delta encoding scheme with lossy compression

