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Checkpoint for ML applications

def train and checkpoint(net, manager): Recovery from Checkpoint
ckpt.restore(manager.latest_checkpoint)f/’////'

1f manager.latest checkpoint:

print ("Restored from {}".format(manager.latest checkpoint))
else:

print("Initializing from scratch.")

for in range(50):
example = next(iterator) )
loss = train step(net, example, opt) Save model’s state for recovery

ckpt.step.assign_add(1)

if int(ckpt.step) & 10 == 0:
save path = manager.save()

print("Saved checkpoint for step {}: {}".format(int(ckpt.step), save path))
print("loss {:1.2f}".format(loss.numpy()))




Checkpoint for ML applications
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« Application errors « System failures » Cloud computing
- Divide by zero - Power outages - Spot instance
- Gradient explosion - Unstable network - Container rescheduling

- Dead activation - Unhealthy disks




Checkpoint for ML applications
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Failure occurs

Frequent checkpoint has less recovery cost




Checkpoint for ML applications

Frequent checkpointing is System: Decrease checkpoint frequency
costly for 10 and storage - ==
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ML & System: Partial checkpoint
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ML & System & Information theory

How can we compress the model checkpoint?




Compression

» Lossless compression
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 Lossy compression
— [, distance-based compression

— Model compression

How to find the redundant information? How to design a suitable scheme?




« Design principles
— Minimize irritation to SGD
— Maximize redundancies in residual information

$

 Two key components
— Approximate tracking by delta-coding.
— Quantization and Huffman coding.




Approximate tracking by delta-coding.
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Quantization and Huffman coding

« Two stage quantization

— Exponent-based quantization [o.76 [laaa] SR ORRHE] o-+- |G 030 o2 [688]

— Priority Promotion ' Exponent-base Quantization
e Huffman Coding e=-1,5=0 e=-25=0 | e=2s=1 | e=-3,5=0 | e=-4,5=0

31 30 23 22 0
S ‘ Exponent (E) Fraction (F) 0.76
1 8 23

32-bit Single-Precision Floating-point Number | 0.82
63 62 52 51 4 B 4
S ' Exponent (E) Fraction (F) 0.79
1 1 52 000

64-bit Double-Precision Floating-point Number




Quantization and Huffman coding

« Two stage quantization _0_49.0,39 0.82.

— Exponent-based quantization ' Exponent-base Quantization
— Priority Promotion
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« System optimization
— Asynchronous execution
— Checkpoint merging
— Huffman code table caching




 Models  Dataset
— Logistic Regression — MNIST
— LeNet-5 — Fashion-MNIST
— AlexNet — Jester
— Matrix Factorization — MoiveLens10M
» Objective

— Comparing the recover cost with previous works

— Evaluating the compression benefit brought by different approaches
— Validating the effectiveness of priority promotion

— Confirming the low overhead




Recovery cost comparison

- Outperforming SCAR by 2.88x-5.77x, and
TOPN by 2.17x-4.06x at 5% checkpoint size

- Outperforming SCAR by 1.9x-4.82x, and
TOPN by 1.52x-2.17x at 10% checkpoint size

- LC-checkpoint has more stable rework cost
as the checkpoint size decreasing

rework cost

12

rework cost

12
= SCAR
mmm TOPN

8 LC

4

0 5% 10%
ckpt size

(a) MLR on MNIST.

Emm SCAR
s TOPN
LC

5% 10%
ckpt size

(c) AlexNet on MNIST.

rework cost

rework cost

12

8

4

0

5% 10%
ckpt size

(b) LeNet on MNIST.

B SCAR
s TOPN
LC

5% 10%
ckpt size

(d) MF on MovieLens.
13




Recovery cost comparison

- Outperforming SCAR by 2.88x-5.77x, and
TOPN by 2.17x-4.06x at 5% checkpoint size

- Outperforming SCAR by 1.9x-4.82x, and
TOPN by 1.52x-2.17x at 10% checkpoint size

- LC-checkpoint has more stable rework cost
as the checkpoint size decreasing

rework cost

12

rework cost

12
= SCAR
mmm TOPN

8 LC

4

0 5% 10%
ckpt size

(a) MLR on MNIST.

Emm SCAR
s TOPN
LC

5% 10%
ckpt size

(c) AlexNet on MNIST.

rework cost

rework cost

12

8

4

0

5% 10%
ckpt size

(b) LeNet on MNIST.

B SCAR
s TOPN
LC

5% 10%
ckpt size

(d) MF on MovieLens.
14




25.0% 25.0%

20.0% == cirin | 20.0%1{8547% i
. . .0% .0%
« Exponent-based quantization w 15
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« Huffman coding
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(a) MLR on MNIST. (b) LeNet on MNIST.
- E yields a compression ratio of 85% on average 55 0% 55 0%
- P brings 9.26% extra compression ratio on ' - ' -
average for 2-bit and 6.23% for 3-bit 20.0% mmeeeen | 20.0% L
- H brings 2% extra compression ratio with 2-bits  15.0% 15.0%
priority promotion, and 1.6% with 3-bits one 10.0% 10.0%
- P with smaller bits yields more benefits for H
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The effectiveness of priority promotion

Rebuild the u,,, by u, + 5,

« X-axis: The exponent bucket id which 0.3

to be removed from 6,,

» Y-axis: Related error calculated by
loss function, lower is better.
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- Smaller exponent buckets have
negligible impact to model state

- 3 buckets (2bits) and 7
buckets(3bits) can hold most of 0.0
significant bits.




Overhead
0.08
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» Each iteration costs 91 seconds T ke
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— Propose an important research question: how to compress checkpoint

— Characterize a family of compression schemes for tracking learning process
— Design a lossy coding scheme to compress checkpoint

— Optimize the training systems to achieve low overhead checkpoint

— Achieve the compression rate up to 28x and recovery speedup up to 5.77x
over the state-of-the-art algorithms

Thank you for your attention!

ychen39@email.wm.edu
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Checkpoint for ML applications

» Classic checkpoint mechanism
— Save model state periodically
— Partially save model state for faster recovery

« Key technical challenge
— Frequent checkpointing is costly for IO and storage

 How can we compress model checkpoint?
— Maximize the compression rate
— The scheme needs to be optimized for ML application

Delta encoding scheme with lossy compression



