On Efficient Constructions of Checkpoints

Yu Chen, Zhenming Liu, Bin Ren and Xin Jin

WILLIAM & MARY JOHNS HOPKINS

UNIVERSITY

Checkpoint for ML applications

def train and checkpoint(net, manager): Recovery from Checkpoint
ckpt.restore(manager.latest_checkpoint)f/’////'

1f manager.latest checkpoint:

print ("Restored from {}".format(manager.latest checkpoint))
else:

print("Initializing from scratch.")

for in range(50):
example = next(iterator))
loss = train step(net, example, opt) Save model’s state for recovery

ckpt.step.assign_add(1)

if int(ckpt.step) & 10 == 0:
save path = manager.save()

print("Saved checkpoint for step {}: {}".format(int(ckpt.step), save path))
print("loss {:1.2f}".format(loss.numpy()))

Checkpoint for ML applications

L
L

« Application errors « System failures » Cloud computing
- Divide by zero - Power outages - Spot instance
- Gradient explosion - Unstable network - Container rescheduling

- Dead activation - Unhealthy disks

Checkpoint for ML applications

cp1 cp2

cp1 cp2 T cp3 cp4

Failure occurs

Frequent checkpoint has less recovery cost

Checkpoint for ML applications

Frequent checkpointing is System: Decrease checkpoint frequency
costly for 10 and storage - ==
> > » >
> >

ML & System: Partial checkpoint

u g _ q_
it

ML & System & Information theory

How can we compress the model checkpoint?

Compression

» Lossless compression

—_—

‘ACT—> 0110 —> ol01110
A

< (10),p
v, ARTG'—> 0011010
d (58).
A—> 0110100
i) Get (132)0

 Lossy compression
— [, distance-based compression

— Model compression

How to find the redundant information? How to design a suitable scheme?

« Design principles
— Minimize irritation to SGD
— Maximize redundancies in residual information

$

 Two key components
— Approximate tracking by delta-coding.
— Quantization and Huffman coding.

Approximate tracking by delta-coding.

W | BENERI i
’ ’ ut=u0+25i

1<t

5 Op=u,— U,
s [Tie i1 |6,=f(5)

‘‘‘‘‘

Quantization and Huffman coding

« Two stage quantization

— Exponent-based quantization [o.76 [laaa] SR ORRHE] o-+- |G 030 o2 [688]

— Priority Promotion ' Exponent-base Quantization
e Huffman Coding e=-1,5=0 e=-25=0 | e=2s=1 | e=-3,5=0 | e=-4,5=0

31 30 23 22 0
S ‘ Exponent (E) Fraction (F) 0.76
1 8 23

32-bit Single-Precision Floating-point Number | 0.82
63 62 52 51 4 B 4
S ' Exponent (E) Fraction (F) 0.79
1 1 52 000

64-bit Double-Precision Floating-point Number

Quantization and Huffman coding

« Two stage quantization _0_49.0,39 0.82.

— Exponent-based quantization ' Exponent-base Quantization
— Priority Promotion

000

« Huffman coding [Lom | :o‘:“]* 01-1 1-00

le7
1e6 1le6 1.50
3 1.25
1.00
2 0.75
0.50
1
0.25
0)
-130 -125 -30 -25 -20 -15 00015718 -17 -16 -15 -14 -13 -12

(a) Exponent distribution of §. (b) Exponent distribution of 5 (3-bit promotion)

« System optimization
— Asynchronous execution
— Checkpoint merging
— Huffman code table caching

 Models Dataset
— Logistic Regression — MNIST
— LeNet-5 — Fashion-MNIST
— AlexNet — Jester
— Matrix Factorization — MoiveLens10M
» Objective

— Comparing the recover cost with previous works

— Evaluating the compression benefit brought by different approaches
— Validating the effectiveness of priority promotion

— Confirming the low overhead

Recovery cost comparison

- Outperforming SCAR by 2.88x-5.77x, and
TOPN by 2.17x-4.06x at 5% checkpoint size

- Outperforming SCAR by 1.9x-4.82x, and
TOPN by 1.52x-2.17x at 10% checkpoint size

- LC-checkpoint has more stable rework cost
as the checkpoint size decreasing

rework cost

12

rework cost

12
= SCAR
mmm TOPN

8 LC

4

0 5% 10%
ckpt size

(a) MLR on MNIST.

Emm SCAR
s TOPN
LC

5% 10%
ckpt size

(c) AlexNet on MNIST.

rework cost

rework cost

12

8

4

0

5% 10%
ckpt size

(b) LeNet on MNIST.

B SCAR
s TOPN
LC

5% 10%
ckpt size

(d) MF on MovieLens.
13

Recovery cost comparison

- Outperforming SCAR by 2.88x-5.77x, and
TOPN by 2.17x-4.06x at 5% checkpoint size

- Outperforming SCAR by 1.9x-4.82x, and
TOPN by 1.52x-2.17x at 10% checkpoint size

- LC-checkpoint has more stable rework cost
as the checkpoint size decreasing

rework cost

12

rework cost

12
= SCAR
mmm TOPN

8 LC

4

0 5% 10%
ckpt size

(a) MLR on MNIST.

Emm SCAR
s TOPN
LC

5% 10%
ckpt size

(c) AlexNet on MNIST.

rework cost

rework cost

12

8

4

0

5% 10%
ckpt size

(b) LeNet on MNIST.

B SCAR
s TOPN
LC

5% 10%
ckpt size

(d) MF on MovieLens.
14

25.0% 25.0%

20.0% == cirin | 20.0%1{8547% i
. . .0% .0%
« Exponent-based quantization w 15
. . . 10.0% 10.0%
* Priority promotion
. 5.0% 5.0%
« Huffman coding
0.0% 2bits 3bits 0.0% 2bits 3bits
(a) MLR on MNIST. (b) LeNet on MNIST.
- E yields a compression ratio of 85% on average 55 0% 55 0%
- P brings 9.26% extra compression ratio on ' - ' -
average for 2-bit and 6.23% for 3-bit 20.0% mmeeeen | 20.0% L
- H brings 2% extra compression ratio with 2-bits 15.0% 15.0%
priority promotion, and 1.6% with 3-bits one 10.0% 10.0%
- P with smaller bits yields more benefits for H
5.0% 5.0%
0.0% 2bits 3bits 0.0% 2bits 3bits
(c) AlexNet on MNIST. (d) MF on MovielLens.

15

The effectiveness of priority promotion

Rebuild the u,,, by u, + 5,

« X-axis: The exponent bucket id which 0.3

to be removed from 6,,

» Y-axis: Related error calculated by
loss function, lower is better.

- m = 10

m = 20
=t m = 30
—t— m = 40
== m = 50
—t— m = 60

related error
©
N

o
[

- Smaller exponent buckets have
negligible impact to model state

- 3 buckets (2bits) and 7
buckets(3bits) can hold most of 0.0
significant bits.

Overhead
0.08
: —— no failure
» Each iteration costs 91 seconds T ke
on average :
 Afailure occurs at 7th iteration = w
» LC checkpoint saves 6 iterations 2004
(546 seconds) 005
» LC checkpoint has less than 4 ' i —— —
seconds overhead |
0.0075 5 T 10 15 20 25 30 l 35
epoc

Failure occurs 6 iterations

— Propose an important research question: how to compress checkpoint

— Characterize a family of compression schemes for tracking learning process
— Design a lossy coding scheme to compress checkpoint

— Optimize the training systems to achieve low overhead checkpoint

— Achieve the compression rate up to 28x and recovery speedup up to 5.77x
over the state-of-the-art algorithms

Thank you for your attention!

ychen39@email.wm.edu
18

Checkpoint for ML applications

» Classic checkpoint mechanism
— Save model state periodically
— Partially save model state for faster recovery

« Key technical challenge
— Frequent checkpointing is costly for IO and storage

 How can we compress model checkpoint?
— Maximize the compression rate
— The scheme needs to be optimized for ML application

Delta encoding scheme with lossy compression

