On Efficient Constructions of Checkpoints

Yu Chen, Zhenming Liu, Bin Ren and Xin Jin


```
def train and checkpoint(net, manager):
                                                 Recovery from checkpoint
 ckpt.restore(manager.latest checkpoint)
 if manager.latest checkpoint:
    print("Restored from {}".format(manager.latest checkpoint))
 else:
    print("Initializing from scratch.")
  for in range (50):
   example = next(iterator)
                                               Save model's state for recovery
    loss = train step(net, example, opt)
    ckpt.step.assign add(1)
    <u>if int(ckpt.step) % 10 == 0:</u>
      save path = manager.save()
      print("Saved checkpoint for step {}: {}".format(int(ckpt.step), save_path))
     print("loss {:1.2f}".format(loss.numpy()))
```


- Application errors
 - Divide by zero
 - Gradient explosion
 - Dead activation

- System failures
 - Power outages
 - Unstable network
 - Unhealthy disks

- Cloud computing
 - Spot instance
 - Container rescheduling

Frequent checkpoint has less recovery cost

Frequent checkpointing is costly for IO and storage

ML & System & Information theory

How can we compress the model checkpoint?

Compression

Lossless compression

"ACT"
$$\rightarrow 01101110 \rightarrow 0101110$$

eg. "AATG" $\rightarrow 00111010$

(58)10

eg. "GCTA" $\rightarrow 1011011100$

(732)10

- Lossy compression
 - l_2 distance-based compression

Model compression

How to find the redundant information?

How to design a suitable scheme?

Design

- Design principles
 - Minimize irritation to SGD
 - Maximize redundancies in residual information

- Two key components
 - Approximate tracking by delta-coding.
 - Quantization and Huffman coding.

Approximate tracking by delta-coding.

$$\begin{cases} \tilde{\mathbf{u}}_t = \mathbf{u}_0 + \sum_{i \le t} \tilde{\delta}_i \\ \delta_t = \mathbf{u}_t - \tilde{\mathbf{u}}_{t-1} \\ \tilde{\delta}_t = f(\delta_t) \end{cases}$$

Quantization and Huffman coding

- Two stage quantization
 - Exponent-based quantization
 - Priority Promotion
- Huffman coding

Quantization and Huffman coding

- Two stage quantization
 - Exponent-based quantization
 - Priority Promotion
- Huffman coding

(b) Exponent distribution of $\tilde{\delta}$ (3-bit promotion)

Design

- System optimization
 - Asynchronous execution
 - Checkpoint merging
 - Huffman code table caching

Evaluation

- Models
 - Logistic Regression
 - LeNet-5
 - AlexNet
 - Matrix Factorization
- Objective
 - Comparing the recover cost with previous works
 - Evaluating the compression benefit brought by different approaches
 - Validating the effectiveness of priority promotion
 - Confirming the low overhead

- Dataset
 - MNIST
 - Fashion-MNIST
 - Jester
 - MoiveLens10M

Recovery cost comparison

- Outperforming SCAR by 2.88x-5.77x, and TOPN by 2.17x-4.06x at 5% checkpoint size
- Outperforming SCAR by 1.9x-4.82x, and TOPN by 1.52x-2.17x at 10% checkpoint size
- LC-checkpoint has more stable rework cost as the checkpoint size decreasing

(c) AlexNet on MNIST.

(b) LeNet on MNIST.

(d) MF on MovieLens.

Recovery cost comparison

- Outperforming SCAR by 2.88x-5.77x, and TOPN by 2.17x-4.06x at 5% checkpoint size
- Outperforming SCAR by 1.9x-4.82x, and TOPN by 1.52x-2.17x at 10% checkpoint size
- LC-checkpoint has more stable rework cost as the checkpoint size decreasing

(c) AlexNet on MNIST.

(b) LeNet on MNIST.

(d) MF on MovieLens.

Compression effect breakdown

- Exponent-based quantization
- Priority promotion
- Huffman coding
- E yields a compression ratio of 85% on average
- P brings 9.26% extra compression ratio on average for 2-bit and 6.23% for 3-bit
- H brings 2% extra compression ratio with 2-bits priority promotion, and 1.6% with 3-bits one
- P with smaller bits yields more benefits for H

(c) AlexNet on MNIST.

(b) LeNet on MNIST.

(d) MF on MovieLens.

The effectiveness of priority promotion

Rebuild the \mathbf{u}_{t+m} by \mathbf{u}_t + δ_m

- X-axis: The exponent bucket id which to be removed from δ_m
- Y-axis: Related error calculated by loss function, lower is better.
- Smaller exponent buckets have negligible impact to model state
- 3 buckets (2bits) and 7 buckets(3bits) can hold most of significant bits.

Overhead

- Each iteration costs 91 seconds on average
- A failure occurs at 7th iteration
- LC checkpoint saves 6 iterations (546 seconds)
- LC checkpoint has less than 4 seconds overhead

Conclusion

- Propose an important research question: how to compress checkpoint
- Characterize a family of compression schemes for tracking learning process
- Design a lossy coding scheme to compress checkpoint
- Optimize the training systems to achieve low overhead checkpoint
- Achieve the compression rate up to 28x and recovery speedup up to 5.77x over the state-of-the-art algorithms

Thank you for your attention!

- Classic checkpoint mechanism
 - Save model state periodically
 - Partially save model state for faster recovery
- Key technical challenge
 - Frequent checkpointing is costly for IO and storage
- How can we compress model checkpoint?
 - Maximize the compression rate
 - The scheme needs to be optimized for ML application

Delta encoding scheme with lossy compression