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<" Distributed fixed-point problem

We define the average operator

T : xeRdH—ZT
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T : XGRdH—ZT

Our goal is to find x* € RY such that

T(X™) = x*.

" Fixed-Point Methods with Local Steps 422



Distributed fixed-point problem

We define the average operator

T : XERdH—ZT

Our goal is to find x* € RY such that
T(X™) = x*.

A fixed-point algorithm iterates:
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Optimization algorithms

Fixed-point algorithms:
Find a minimizer of a function

Gradient descent:
x*1 = xK — 4V F(x¥)

Proximal point algorithm:

X1 = argmin F(x) + 5-[x — x

X

K||2
|
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Optimization algorithms

Fixed-point algorithms:
Find a minimizer of a function

Proximal splitting algorithms
Primal-dual algorithms

Cyclic or shuffled GD
(Block-)coordinate methods
Methods with inertia, momentum...
Conjugate gradient methods
Higher-order methods
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Fixed-point methods

Fixed-point algorithms:
Find a minimizer of a function
Find a saddle point of a convex-concave function
Find a solution of a PDE
Find an eigenvector
Solve a monotone inclusion or variational inequality
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Algorithm

Algorithm 1 Local distributed fixed-point method

Input: Initial estimate X° € R?, stepsize A > 0,

sequence of synchronizationtimes 0=ty < t; < ...

Initialize: x? = X°, fori=1,...,M
fork=0,1,...do
fori=1,2,..., Min parallel do
h;‘” = (1 — )\)x/‘ + )\T,-(x,.k)
if Kk+1 =1, forsome n, then
Communicate h**! to master node
else
Xik+1 ‘— h;(+1
end if
end for
If Kk +1 = 1{,, for some n, then
At master node: X/*1 .= 1 5™V ph+t
Broadcast: x**1 = x**1 foralli=1,...,M
end if
end for
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Algorithm

Algorithm 1 Local distributed fixed-point method

Input: Initial estimate X° € R?, stepsize A > 0,
sequence of synchronizationtimes 0=ty < t; < ...
Initialize: x? = X°, fori=1,...,M
fork=0,1,...do

fori=1,2,..., Min parallel do n-th epoch:
AT = (1 = X[+ ATi(x]) sequence
Communicate h**! to master node kol ot 41 "
else = lp—1 y-en s I
Xik+1 ‘— h;(+1
end if
end for

If Kk+1 =1, for some n, then y
At master node: X*+1 == 157 pi+
Broadcast: x**1 = x**1 foralli=1,...,M
end if
end for
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Communication times

Nb of iterations in each epoch supposed bounded:

Assumption: 1 <t,—t,_1 < H, foreveryn > 1.
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Communication times

Nb of iterations in each epoch supposed bounded:

Assumption: 1 <t,—t,_1 < H, foreveryn > 1.

Example:
tn . nH
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<" Analysis in the contractive case

o tn —_ nH
» All 7; are y-contractive, for y € [0, 1)
.e. | 7ix) =Tyl < xllx=yll, ¥x,y
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Analysis In the contractive case

tn=nH

All ’7; are y-contractive, for y € [0, 1)

We define the operator

M
-
T==S (AT +(1-Xld)"
M =1
Then
1 M
s(n+1)H thnﬂ _ )
=
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Analysis In the contractive case

Theorem 2.11 (linear convergence) The fixed point x' of
T exists and is unique, and X" converges linearly to xT.
More precisely,

(1) T is £H-contractive, with ¢ = max (AX + (1 —=A), A1 +x) — 1).
(i) Yn € N, [|&IDF — xT{| < £7] %™ — xT||.

(i) Vn € N, |5 — xt|| < €™M|%0 — xt].
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Analysis In the contractive case

Theorem 2.11 (linear convergence) The fixed point x' of
T exists and is unique, and X" converges linearly to xT.
More precisely,

(1) T is £H-contractive, with ¢ = max (AX + (1 —=A), A1 +x) — 1).
(i) Yn € N, [|&IDF — xT{| < £7] %™ — xT||.

(i) Vn € N, |5 — xt|| < €™M|%0 — xt].

Note: Without further knowledge, set A = 1.
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Analysis In the contractive case

Theorem 2.14 (size of the neighborhood)
Suppose that A = 1. So, £ = x. Then

[x' = x| < S,

where g
. g 1 — §H_1 1 A *

I=1
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Analysis In the contractive case

Theorem 2.14 (size of the neighborhood)
Suppose that A = 1. So, £ = x. Then

[x' = x| < S,

where

E 1" 1 Qn
S= g o T Xl

I=1

Note1: S=0ifH=1,orM=1,0r7;=7T,0r&=0.
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Analysis In the contractive case

Theorem 2.14 (size of the neighborhood)
Suppose that A = 1. So, £ = x. Then

[x' = x| < S,

where

E 1" 1 Qn
S= g o T Xl

I=1

Note1: S=0ifH=1,orM=1,0r7;=7T,0r&=0.
Note2: f H:1 " +00, S:0 7 5% with

CRMLERE S
_1_€Mi=1 | |
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Analysis In the contractive case

Theorem 2.14 (size of the neighborhood)
Suppose that A = 1. So, £ = x. Then

Ixt— x| < s

where

E 1" 1 Qn
S= g o T Xl

I=1

Corollary: For every n e N,

|5 —x*[| < €MX° — x| + S

< EM(I° — x| + ) + S.
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Results: logistic regression
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Epsilon-accuracy
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Epsilon-accuracy

Note:
Local GD:

O(;; 4 log(2))
but
it H=0(1 +¢)
X7 =
X* O(Llog(1))
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Analysis in the non-contractive case

t,=nH @3 convergence to xT, a fixed point of

_~

T =3 S (VT4 (1= Mid)”

sublinear rates on [|[X™DH — g"H|12 or || XK — T(%%)||?

th=nH [ convergence w.r.t. nb. epochs
1 to H times faster

Fixed-Point Methods' with Local Steps 18 /22



Algorithm 2

Algorithm 2 Randomized distributed fixed-point method

Input: Initial estimate X° € RY, stepsize A > 0,
communication probability 0 < p < 1
Initialize: x? = X%, foralli=1,...,M
fork=1,2,...do
fori=1,2,...,Min parallel do
R = (1 — N XX + ATj(x¥)
end for
Flip a coin and
with probability p do
Communicate hf*! to master, fori=1,..., M
At master node: k%1 = L SV pie
Broadcast: x/*1 .= x**1 foralli=1,...,M
else, with probability 1 — p, do
xf*1 = 1 foralli=1,..., M

end for
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Analysis of Algorithm 2

Assumption 3.1
(1 + ) Ti(x) = TiWIZ < lIx = yI* = lIx = Ti(x) — y + Tiy)|I°
for some p > 0

Lyapunov function: v

1
S e s 2 |-
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Analysis of Algorithm 2

Assumption 3.1

(1 + p)||7i(x)

= TiWIP < [Ix = yl® = [Ix = Tilx) — y + Ti(y) |3

for some p > 0

Lyapunovfuncﬁon

A
S 2 |-

M

For A small enough.
Theorem 3.2

K 3
E[WA] < (1 —min( AP ,E>> yo 4 150 A DX = Tilx )|
1+/0 5 mln(Ap g)pzM .
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Conclusion

Local steps: good to achieve a medium-accuracy
solution faster, if communication is the bottleneck

e
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