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Overview

The setting:
- Deep Neural Networks
- Interference: p = (Vyof(u1), Vof(u2))
- Data: classification, regression, interactive environments
- Training: supervised vs reinforcement (TD, TD()), sra)

We wish to understand the relation between interference and
generalization, and how Temporal Difference affects both.
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Key Takeaways

For the same data:

- TD tends to induce unaligned (p = 0 + ¢) representations
SL tends to induce aligned (p > 0) representations
increased alignment is correlated with:

- areduced generalization gap in TD
- an increased generalization gap in SL

TD and SL generalize differently! Even for RL data
TD() controls this behaviour (A = 1 being ~ SL)
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Key Takeaways

In more intuitive words/conjecture:

For the same data:
- TD tends to memorize its data
- SL tends to generalize

further training:

- breaks memorized structures in TD
- creates memorized structures in SL (overfitting)

TD and SL generalize differently! Even for RL data
TD(\) controls this behaviour (A = 1 being ~ SL)
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Interference

Vof(x2)
% Vof(x1)
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Vo) Vof(x1)

Af(x2) = aV] f(x2)Vof(x1)
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Interference

- Taylor expansion:

f(x,0') = f(x,0)+Vef(x)T(0' — 0) +(6'—0)V2F(x)(0'—0)+...

- stiffness (Fort et al., 2019):

.
angle(Vf(x1), VI(x2)) = HVfo(()):))H vaff(()fz))\\
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Classification

Classifier RL Agent

Generalization Gap

Overfitting manifests differently
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Supervised Data
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Figure 1. Correlation coefficient r between the (log) function in-
terference g and the generalization gap, as a function of training
set size; shaded regions are bootstrapped 90% confidence intervals.
We see different trends for value-based experiments (middle) than
for supervised (left) and PG experiments (right).
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Atari

Measuring gain (effective loss interference) for nearby states:
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Atari

Measuring gain (effective loss interference) for nearby states:
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Understanding interference in TD
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Understanding interference in TD

- Test TD(\), which “smooths” those wiggles
- Test for correlation between wiggles and performance
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TD()\)

TD(\) smooths the TD target by taking into account (weighed)
future predictions:

GMS)=(1-N> " A"*1G"<st) (1)

G"(S) =7 V(st+n)+2 Y R(Sts5) (2
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Figure 5. Cosine similarity between gradients at .S; (offset z = 0)
and the gradients at the neighboring states in the replay buffer
(MsPacman). As )\ increases, so does the temporal coherence of
the gradients.
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TD()\)

Increasing X increases how fast the loss decreases (around s;)
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Local prediction variance
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Local prediction variance

100
(¢

= 90 A
I Q c
g q o & °
£ 801 ¢
a0
g o
704 -
-t — a=25-10"1 r=—0.71

60 a=1.0-1077, r=0.12 ¢

L ]

10* 4
[N
% 105 —_— a=2.5-1071 r=0.71
g a=1.0-105, r=0.06
-

1072 4

0.80 0.82 0.84 0.86 0.88
sign variance of &

17/20 ICML 2020 )



Interference update decomposition

Two extra terms in the TD update’s interference time derivative:
! = — 2503 — 20408 ABD
Preg;AB PABYB AOBPABPBB
— 5A5[23VfB(FIAVfB + /:IBVfA)

Pro.a8 = —020A8(PA8 — Vi) — 0adPas(PBB — V1PEB)
— 6408V fg(HaV 1 + HpV 1)

— gradient variance induced by errors in predictions will be
much larger for a high-capacity high-variance model
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Interference update decomposition

DDQN and QL (no frozen target) have unstable updates, unlike
Regression and DQN (frozen target):
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Recap & Conclusion

- generalization dynamics in SL and DL — different
parameterizations.

- in RL tasks, TD doesn’t generalize as well as SL
(even when the f to approximate is the same)

- find link between the complexity and variance of TD targets
and interference

- TD(\) has generalization potential
- better optimizers for TD might improve things quite a lot!
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