
Implicit Class-Conditioned Domain Alignment
for Unsupervised Domain Adaptation

Xiang Jiang
1,2

Qicheng Lao
1,4

Stan Matwin
1,3

Mohammad Havaei
1

1Imagia 2Dalhousie University 3Polish Academy of Sciences

4Mila, Université de Montréal
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Introduction: Unsupervised Domain Adaptation

Introduction: Unsupervised Domain Adaptation (UDA)

The setup of UDA:

observed variable X

labeling function f , labels Y = f (X )

domain variable D

The goal is to learn p(y |x) where

DS = {(xi , fS(xi ))}ni=1

DT = {xj}mj=1

fS = fT
disease image

scanner

predict

predict
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Related Work

Related Work

Adversarial domain-discriminator based approaches [Ganin et al., 2016]:

min
θ
L(DS) + λdis(DS ,DT ) (1)

max
f

dis(DS ,DT ) (2)

Limitation: pS(x) = pT (x) ; pS(x |y) = pT (x |y)

Prototype-based class-conditioned explicit alignment [Luo et al., 2017, Xie et al., 2018]:

min
θ
L(DS) + λ1dis(DS ,DT ) + λ2Lexplicit (3)

max
f

dis(DS ,DT ) (4)

where
Lexplicit = E[cj

S − cj
T ] (5)

cj
S =

1

Nj

∑
(xi ,yi )∈DS

1{yi=j}fφ(xi ) (6)

Limitation: Error accumulation in explicit optimization on pseudo-labels
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Motivation

Motivations

Applied motivation

Theoretical motivation
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Motivation

Applied Motivation

Challenges for applying UDA in real-world applications [Tan et al., 2019]:

within-domain class imbalance;

between-domain class distribution shift, aka, prior probability shift.

$SSOLHG�0RWLYDWLRQV
Ɣ :LWKLQ�GRPDLQ�FODVV�LPEDODQFH
Ɣ %HWZHHQ�GRPDLQ�FODVV�GLVWULEXWLRQ�VKLIW

ż DND��SULRU�SUREDELOLW\�VKLIW

�

VRXUFH

WDUJHW
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Motivation

Theoretical Motivation: Empirical Domain Divergence

Definition ([Ben-David et al., 2010])

The H∆H divergence between two domains is defined as

dH∆H(DS ,DT ) = 2 sup
h,h′∈H

|EDT
[h 6= h′]− EDS

[h 6= h′] |, (7)

Definition (mini-batch based empirical domain discrepancy)

Let BS , BT be minibatches from US and UT , respectively, where BS ⊆ US ,
BT ⊆ UT , and |BS | = |BT |. The empirical estimation of dH∆H(BS ,BT ) over the
minibatches BS , BT is defined as

d̂H∆H(BS ,BT ) = sup
h,h′∈H

∣∣∣∣∣∑
BT

[h 6= h′]−
∑
BS

[h 6= h′]

∣∣∣∣∣ . (8)
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Motivation

Theoretical Motivation: The Decomposition

Theorem (The decomposition of d̂H∆H(BS ,BT ))

We define three disjoint sets on the label space: YC := YS ∩ YT , YS := YS − YC , and
YT := YT − YC . We also define the following disjoint sets on the input space where

BC
S := {x ∈ BS | y ∈ YC}, BC

S := {x ∈ BS | y /∈ YC}, BC
T := {x ∈ BT | y ∈ YC},

BC
T := {x ∈ BT | y /∈ YC}. The empirical d̂H∆H(BS ,BT ) divergence can be decomposed

into as the following:

d̂H∆H(BS ,BT ) = sup
h,h′∈H

∣∣∣ξC (h, h′) + ξC (h, h′)
∣∣∣ , (9)

where

ξC (h, h′) =
∑
BC
T

1
[
h 6= h′]−∑

BC
S

1
[
h 6= h′] , (10)

ξC (h, h′) =
∑
BC
T

1
[
h 6= h′]−∑

BC
S

1
[
h 6= h′] . (11)

Implicit Alignment for UDA June 13, 2020 7 / 32



Motivation

Theoretical Motivation: Domain-Discriminator Shortcut
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4 4

Remark (The domain discriminator shortcut)

Let fc be a classifier that maps x to a class label yc . Let fd be a domain
discriminator that maps x to a binary domain label yd . For the empirical

class-misaligned divergence ξC (h, h′) with sample x ∈ BCS ∪ BCT , there exists a
domain discriminator shortcut function

fd(x) =

{
1 fc(x) ∈ YS

0 fc(x) ∈ YT ,
(12)

such that the domain label can be solely determined by the domain-specific class
labels. (More pronounced under imbalance and distribution shift.)
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Proposed Approach

Proposed Approach

pseudo-labels

sampling

𝑝(𝑧|𝑥; 𝜙) 𝑝(𝑦*|𝑧*; 𝜃)

,𝑦*

𝑝-(𝑥) 𝑝- 𝑥 𝑦 𝑝(𝑦)

𝑝* 𝑥 ,𝑦 𝑝(𝑦)

data implicit
alignment

domain-invariant
representations classifier

(a) (b) (c) (d)

𝑝*(𝑥)

For pS(x), we sample x ∼ pS(x |y)p(y) based on the alignment distribution
p(y)

For pT (x), we sample a class aligned minibatch x ∼ pT (x |ŷ)p(y) using
identical p(y), with the help of pseudo-labels ŷT
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Proposed Approach

Proposed Approach

1: Input: dataset S = {(xi , yi )}Ni=1, T = {xi}Mi=1,
2: label space Y, label alignment distribution p(y),
3: classifier fc(·; θ)
4: while not converged do
5: # predict pseudo-labels for T
6: T̂ ← {(xi , ŷi )}Mi=1 where xi ∈ T and ŷi = fc(xi ; θ)
7: # sample N unique classes in the label space
8: Y ← draw N samples in Y from p(y)
9: # sample K examples conditioned on each yj ∈ Y

10: for yj in Y do
11: (X ′

S ,Y
′
S) �draw K samples in S from pS(x |y = yj)

12: X ′
T �draw K samples in T̂ from pT (x |ŷ = yj)

13: end for
14: # domain adaptation training on this minibatch
15: train minibatch (X ′

S ,Y ′
S ,X ′

T )
16: end while
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Proposed Approach

Advantages of the proposed approach

1 Minimizes the class-misaligned divergence ξC (h, h′), providing a more reliable
empirical estimation of domain divergence;

2 Provides balanced training across all classes;

3 Removes the need to optimize model parameters from pseudo-labels explicitly;

4 Simple to implement and is orthogonal to different domain discrepancy
measures: DANN and MDD.
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Proposed Approach

Extending Implicit Alignment to MDD

MDD is defined as

df ,F (S ,T ) = sup
f ′∈F

(
dispDT

(f ′, f )− dispDS
(f ′, f )

)
, (13)

where f and f ′ are two independent scoring functions that predict class
probabilities, and disp(f ′, f ) is a disparity measure between the scores provided by
the classifiers f ′ and f .
We introduce a masking scheme on f and f ′ defined as

d̂f ,F (BS ,BT )

= sup
f ′∈F

(∑
BT

disp(f ′ � ω, f � ω)−
∑
BS

disp(f ′ � ω, f � ω)
)
, (14)

where f � ω denotes element-wise multiplication between the output of f and ω.
The alignment mask ω is a binary vector that denotes whether the i-th class is
present in the sampled classes Y (i.e., the classes that we intend to align in the
current minibatch).
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Experiments

Experiment Setup

Datasets:

Office-31 [Saenko et al., 2010]

Office-Home [Venkateswara et al., 2017]
1 standard [Venkateswara et al., 2017]: natrual imbalance
2 balanced [Tan et al., 2019]
3 “RS-UT” [Tan et al., 2019]

VisDA2017 (synthetic→real) [Peng et al., 2017]

MNIST and SVHN (ablation studies)

Baselines:

Covariate and Label Shift CO-ALignment (COAL) [Tan et al., 2019]

Explicit alignment [Liang et al., 2019b, Liang et al., 2019a]

PyTorch Code: https://github.com/xiangdal/implicit_alignment
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Experiments

Dataset Statistics

Classes
0

20

40

60

80

100

N
um

be
r 

of
 e

xa
m

pl
es

 p
er

 c
la

ss

Source
Target

Figure: Class frequency of Cl→Rw, Office-Home (standard)
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Figure: Class frequency of of Cl→Rw, Office-Home (RS-UT)
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Experiments

Empirical Results: Office-Home (RS-UT)

Methods Rw�Pr Rw�Cl Pr�Rw Pr�Cl Cl�Rw Cl�Pr Avg

Source Only† 69.77 38.35 67.31 35.84 53.31 52.27 52.81

BSP [Chen et al., 2019]† 72.80 23.82 66.19 20.05 32.59 30.36 40.97
PADA [Cao et al., 2018]† 60.77 32.28 57.09 26.76 40.71 38.34 42.66
BBSE [Lipton et al., 2018]† 61.10 33.27 62.66 31.15 39.70 38.08 44.33
MCD [Saito et al., 2018]† 66.03 33.17 62.95 29.99 44.47 39.01 45.94
DAN [Long et al., 2015]† 69.35 40.84 66.93 34.66 53.55 52.09 52.90
F-DANN [Wu et al., 2019]† 68.56 40.57 67.32 37.33 55.84 53.67 53.88
JAN [Long et al., 2017]† 67.20 43.60 68.87 39.21 57.98 48.57 54.24
DANN [Ganin et al., 2016]† 71.62 46.51 68.40 38.07 58.83 58.05 56.91
MDD (random sampler) 71.21 44.78 69.31 42.56 52.10 52.70 55.44
MDD (source-balanced sampler) 76.06 47.38 71.56 40.03 57.46 58.54 58.50
COAL [Tan et al., 2019]†,‡ 73.65 42.58 73.26 40.61 59.22 57.33 58.40
MDD+Explicit Alignment (basic)‡ 69.52 44.70 69.59 40.27 53.02 53.39 55.08
MDD+Explicit Alignment (moving avg.)‡ 71.37 45.26 69.69 40.28 52.92 52.69 55.37
MDD+Explicit Alignment (curriculum)‡ 70.02 45.48 69.71 40.86 53.26 52.99 55.39
MDD+Implicit Alignment 76.08 50.04 74.21 45.38 61.15 63.15 61.67

† Source: Data of these baseline methods are cited from [Tan et al., 2019].
‡ Methods using explicit class-conditioned domain alignment.
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Experiments

Empirical Results: Office-31 (standard)

Method A � W D � W W � D A � D D � A W � A Avg

Source only 68.4±0.2 96.7±0.1 99.3±0.1 68.9±0.2 62.5±0.3 60.7±0.3 76.1

DAN [Long et al., 2015] 80.5±0.4 97.1±0.2 99.6±0.1 78.6±0.2 63.6±0.3 62.8±0.2 80.4
DANN [Ganin et al., 2016] 82.0±0.4 96.9±0.2 99.1±0.1 79.7±0.4 68.2±0.4 67.4±0.5 82.2
ADDA [Tzeng et al., 2017] 86.2±0.5 96.2±0.3 98.4±0.3 77.8±0.3 69.5±0.4 68.9±0.5 82.9
JAN [Long et al., 2017] 85.4±0.3 97.4±0.2 99.8±0.2 84.7±0.3 68.6±0.3 70.0±0.4 84.3
MADA [Pei et al., 2018] 90.0 ± 0.1 97.4±0.1 99.6±0.1 87.8±0.2 70.3±0.3 66.4±0.3 85.2
GTA [Sankaranarayanan et al., 2018] 89.5±0.5 97.9±0.3 99.8±0.4 87.7±0.5 72.8±0.3 71.4±0.4 86.5
MCD [Saito et al., 2018] 88.6±0.2 98.5±0.1 100.0±.0 92.2±0.2 69.5±0.1 69.7±0.3 86.5
CDAN [Long et al., 2018] 94.1±0.1 98.6±0.1 100.0±.0 92.9±0.2 71.0±0.3 69.3±0.3 87.7
MDD [Zhang et al., 2019] 94.5±0.3 98.4±0.1 100.0±.0 93.5±0.2 74.6±0.3 72.2±0.1 88.9
PACET [Liang et al., 2019b]‡ 90.8 97.6 99.8 90.8 73.5 73.6 87.4
CAT [Deng et al., 2019]‡ 94.4±0.1 98.0±0.2 100.0±0.0 90.8±1.8 72.2±0.2 70.2±0.1 87.6
MDD (source-balanced sampler) 90.4±0.4 98.7±0.1 99.9±0.1 90.4±0.2 75.0±0.5 73.7±0.9 88.0
MDD+Explicit Alignment‡ 92.3±0.1 98.2±0.1 99.8±.0 92.3±0.3 74.6±0.2 72.9±0.7 88.4
MDD+Implicit Alignment 90.3±0.2 98.7±0.1 99.8±.0 92.1±0.5 75.3±0.2 74.9±0.3 88.8

‡ Methods using explicit class-conditioned domain alignment.
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Experiments

Empirical Results: Office-Home (standard)

Method Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg

Source only 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1

DAN [Long et al., 2015] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
DANN [Ganin et al., 2016] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
JAN [Long et al., 2017] 45.9 61.2 68.9 50.4 59.7 61.0 45.8 43.4 70.3 63.9 52.4 76.8 58.3
CDAN [Long et al., 2018] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
BSP [Chen et al., 2019] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
MDD [Zhang et al., 2019] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
MCS [Liang et al., 2019a]‡ 55.9 73.8 79.0 57.5 69.9 71.3 58.4 50.3 78.2 65.9 53.2 82.2 66.3
MDD+Explicit Alignment‡ 54.3 74.6 77.6 60.7 71.9 71.4 62.1 52.4 76.9 71.1 57.6 81.3 67.7
MDD (source-balanced sampler) 55.3 75.0 79.1 62.3 70.1 73.2 63.5 53.2 78.7 70.4 56.2 82.0 68.3
MDD+Implicit Alignment 56.2 77.9 79.2 64.4 73.1 74.4 64.2 54.2 79.9 71.2 58.1 83.1 69.5

‡ Methods using explicit class-conditioned domain alignment.
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Experiments

Empirical Results: VisDA2017

method acc. (%)

JAN [Long et al., 2017] 61.6

GTA[Sankaranarayanan et al., 2018] 69.5

MCD [Saito et al., 2018] 69.8

CDAN [Long et al., 2018] 70.0

MDD [Zhang et al., 2019] 74.6

MDD+Explicit Alignment 67.1

MDD+Implicit Alignment 75.8
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Experiments

Ablation Studies: Implicit vs. Explicit Alignment

(a) (b)
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Experiments

Ablation Studies: Robustness to Pseudo-label Errors
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Experiments

Ablation Studies: Class Diversity and Alignment
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N: the number of unique labels per batch
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Experiments

Interactions between class imbalance and distribution shift

Source Domain Target Domain

balanced

imbalanced

balanced

imbalanced

Table: S-balanced, T-imbalanced.

SVHN→MNIST MNIST→SVHN

method mild extreme mild extreme

source only 67.4±7.3 66.3±3.3 32.5±2.9 28.2±2.3

DANN 78.2±2.8 59.1±0.8 20.9±6.0 20.5±3.1

DANN+implicit 88.6±0.7 82.2±2.1 32.4±2.1 28.9±3.3

Table: S-imbalanced, T-balanced.

SVHN→MNIST MNIST→SVHN

method mild extreme mild extreme

source only 65.2±2.1 53.3±1.3 31.6±3.3 32.8±0.9

DANN 82.0±0.7 52.3±2.3 23.4±3.6 25.9±0.5

DANN+implicit 91.0±1.9 87.1±2.6 34.9±0.5 31.1±2.9

Table: Both domains imbalanced.

SVHN→MNIST MNIST→SVHN

method mild extreme mild extreme

source only 60.9±5.2 51.2±5.9 30.6±1.3 27.1±1.7

DANN 67.6±0.8 40.5±5.5 23.4±1.6 18.8±2.9

DANN+implicit 88.6±0.6 70.5±3.6 36.3±2.5 27.9±2.4
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Conclusion

Conclusion

We introduce an implicit class-conditioned domain alignment approach;

A more reliable measure of empirical domain divergence;

Implicit alignment works well under extreme within-domain class imbalance
and between-domain class distribution shift, as well as competitive results on
standard UDA tasks;

The proposed approach is simple to implement and orthogonal to the choice of
domain adaptation algorithms.
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Future Work

Future Work

Other domain adaptation setups, e.g., open set domain adaptation and partial
domain adaptation.

Cost-sensitive learning for domain adaptation.

More work on domain adaptation in the presence of within-domain imbalance
and between-domain class distribution shift are needed to facilitate safer use of
machine learning models in the real-world.
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Future Work

Thank you!
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