Implicit Class-Conditioned Domain Alignment
for Unsupervised Domain Adaptation

Xiang Jian 31'2 Qicheng Lao™ .
Stan Matwin Mohammad Havaei

Ymagia 2Dalhousie University 3Polish Academy of Sciences

“Mila, Université de Montréal

June 13, 2020

e T T —— NV



L nioduction Unsupenvised Domain Adspiation
Introduction: Unsupervised Domain Adaptation (UDA)

The setup of UDA: predict
@ observed variable X

@ labeling function f, labels Y = f(X)
@ domain variable D scanner
@ The goal is to learn p(y|x) where

o Ds = {(x, ()}, — 1

o Dr = {XJ}Jm:1

o fo = fr disease image
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Related Work

Adversarial domain-discriminator based approaches [Ganin et al., 2016]:
mgin L(Ds) + Adis(Ds, D) (1)
max dis(Ds, D7) (2)
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. RelaedWork |
Related Work

Adversarial domain-discriminator based approaches [Ganin et al., 2016]:

min L(Ds) + Adis(Ds, D) (1)
max dis(Ds, D7) (2)
Limitation: ps(x) = pr(x) # ps(x|y) = pr(x|y) J
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. RelaedWork |
Related Work

Adversarial domain-discriminator based approaches [Ganin et al., 2016]:

mgin L(Ds) + Adis(Ds, D) (1)
max dis(Ds, D7) (2)
Limitation: ps(x) = pr(x) # ps(x|y) = pr(x|y) )
Prototype-based class-conditioned explicit alignment [Luo et al., 2017, Xie et al., 2018]:
mgin L(Ds) + Mdis(Ds, D7) 4+ A2Lexplicit (3)
max dis(Ds, D) (4)
where
Lexplicit = E[st — G T] (5)
¢ = %J ST Lypfe(x) (6)
(xi»yi)€Ds

e e T —— e e 52



. RelaedWork |
Related Work

Adversarial domain-discriminator based approaches [Ganin et al., 2016]:

mgin L(Ds) + Adis(Ds, D) (1)
max dis(Ds, D7) (2)
Limitation: ps(x) = pr(x) # ps(x|y) = pr(x|y) )
Prototype-based class-conditioned explicit alignment [Luo et al., 2017, Xie et al., 2018]:
mgin L(Ds) + Mdis(Ds, D7) 4+ A2Lexplicit (3)
max dis(Ds, D) (4)
where
Lexplicit = E[st — G T] (5)
¢ = %J ST Lypfe(x) (6)
(xi»yi)€Ds
Limitation: Error accumulation in explicit optimization on pseudo-labels )
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Motivations

@ Applied motivation

@ Theoretical motivation
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Applied Motivation

Challenges for applying UDA in real-world applications [Tan et al., 2019]:
@ within-domain class imbalance;

@ between-domain class distribution shift, aka, prior probability shift.

source

target
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Theoretical Motivation: Empirical Domain Divergence

Definition ([Ben-David et al., 2010])

The HAH divergence between two domains is defined as

dyan(Ds, D7) = 2hiUPH |Ep, [h# h'] —Ep, [h# ]|, (7)
he

Definition (mini-batch based empirical domain discrepancy)

Let Bs, Bt be minibatches from Us and U7, respectively, where Bs C Us,
Bt C U7, and |Bs| = |Bt|. The empirical estimation of dyax(Bs, Bt) over the
minibatches Bs, Bt is defined as

dynn(Bs, Br) = Sup Z[h;«éh]fz:[h;éh] (8)

v
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Theoretical Motivation: The Decomposition

Theorem (The decomposition of dyaw(Bs, BT))

We define three disjoint sets on the label space: Yc := YsN Y7, Ys:=Ys — Yc, and
Y7 :=Yr — Yc. We also define the following disjoint sets on the input space where

BS :={xeBs|yeYc} B :={xeBs|y¢Yc} Bf :={xeBr|ye Yc},

BS :={xe€Br|y¢ Yc}. The empirical dra(Bs,Br) divergence can be decomposed
into as the following:

dran(Bs, Br) = sup ‘gc(h,h')+§(h,h’), (9)
h,h eH
where
£S(h,H) Z [h#H] =Y 1[h#H], (10)
B§
€S(h, H') Z [h£H] =S 1[n#h]. (11)
5§ B§
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Theoretical Motivation: Domain-Discriminator Shortcut

3]

(source, target) domain discriminator
”
| shortcut
.
u,

Misaligned: ( s n) <
|
Aligned: ( R ) — .,Il,.

goal

Remark (The domain discriminator shortcut)

Let f. be a classifier that maps x to a class label y.. Let fy be a domain
discriminator that maps x to a binary domain label y4. For the empirical
class-misaligned divergence £€(h, h') with sample x € BS U B$, there exists a
domain discriminator shortcut function

1 f(x)€VYs
f, = c — 12
a(x) {o f.(x) € Yr. (12
such that the domain label can be solely determined by the domain-specific class
labels. (More pronounced under imbalance and distribution shift.)

V.
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Proposed Approach

pr(x)

psxIMP®) | 4us %2

0

2

0
o3 &
Dad .

S e p(zlx; )

[

pOrrlzr; 6)

PT(be’)p(y) pseudo-labels 7

sampling— T . N
data implicit domain-invariant classifier
alignment representations

(a)

@ For ps(x), we sample x ~ ps(x|y)p(y) based on the alignment distribution

p(y)

(b) (©) (d)

e For pr(x), we sample a class aligned minibatch x ~ pr(x|9)p(y) using
identical p(y), with the help of pseudo-labels yr
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_ Proposed Approach
Proposed Approach

1: Input: dataset S = {(x;,yi))}M,, T = {x}M,,

2: label space Y, label alignment distribution p(y),
3: classifier f.(-; 0)

4. while not converged do

5. # predict pseudo—/abe/s for T

6: T« {(x,9)}M, where x; € T and §; = f.(x;; 0)

7. # sample N unique classes in the label space

8 Y < draw N samples in Y from p(y)

9:  # sample K examples conditioned on each y; € Y
10:  for y; in Y do

11: (X¢, Y¢) «~draw K samples in S from ps(x|y = y;)
12: X/ «draw K samples in T from pr(x|y = y;)

13:  end for

14:  # domain adaptation training on this minibatch

15:  train minibatch (X¢, Y, X%)
16: end while
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_ Proposed Approach
Advantages of the proposed approach

@ Minimizes the class-misaligned divergence S?(h, H), providing a more reliable
empirical estimation of domain divergence;
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_ Proposed Approach
Advantages of the proposed approach

@ Minimizes the class-misaligned divergence S?(h, H), providing a more reliable
empirical estimation of domain divergence;

@ Provides balanced training across all classes;

© Removes the need to optimize model parameters from pseudo-labels explicitly;
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_ Proposed Approach
Advantages of the proposed approach

@ Minimizes the class-misaligned divergence ff(h, h'), providing a more reliable
empirical estimation of domain divergence;

@ Provides balanced training across all classes;
© Removes the need to optimize model parameters from pseudo-labels explicitly;

@Q Simple to implement and is orthogonal to different domain discrepancy
measures: DANN and MDD.
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_ Proposcd Avponch
Extending Implicit Alignment to MDD

MDD is defined as

dr.7(S,T) = sup (dispp, (£, ) — dispp, (', 1)), (13)
freF

where f and f’ are two independent scoring functions that predict class
probabilities, and disp(f’, f) is a disparity measure between the scores provided by
the classifiers f' and f.

We introduce a masking scheme on f and f’ defined as

dr. (Bs, Br)

= ﬁ?}(ZdlSp (f'Ow,fOw)— Zdisp(f’@w,f@w))’ (14)
Bs

where f ® w denotes element-wise multiplication between the output of f and w.
The alignment mask w is a binary vector that denotes whether the i-th class is
present in the sampled classes Y (i.e., the classes that we intend to align in the
current minibatch).
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|
Experiment Setup

Datasets:
o Office-31 [Saenko et al., 2010]

o Office-Home [Venkateswara et al., 2017]

@ standard [Venkateswara et al., 2017]: natrual imbalance
@ balanced [Tan et al., 2019]
© “RS-UT" [Tan et al., 2019]

o VisDA2017 (synthetic—real) [Peng et al., 2017]
e MNIST and SVHN (ablation studies)
Baselines:
o Covariate and Label Shift CO-ALignment (COAL) [Tan et al., 2019]
o Explicit alignment [Liang et al., 2019b, Liang et al., 2019a]

PyTorch Code: https://github.com/xiangdal/implicit_alignment

] Implicit Alignment for UDA June 13,2020  13/32


https://github.com/xiangdal/implicit_alignment

~Experimens |
Dataset Statistics

sssss

per lass

Number of examples

Figure: Class frequency of Cl—Rw, Office-Home (standard)

30
20

Figure: Class frequency of of Cl—Rw, Office-Home (RS-UT)

es per class

Number of exampl
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Empirical Results: Office-Home (RS-UT)

Methods Rw—Pr Rw-Cl Pr-Rw Pr-Cl Cl-Rw CI-Pr Avg
Source Onlyf 69.77 38.35 67.31 35.84 53.31 5227 5281
BSP [Chen et al., 2019]" 72.80 23.82 66.19 20.05 32.59 30.36  40.97
PADA [Cao et al., 2018] 60.77 32.28 57.09 26.76 40.71 38.34  42.66
BBSE [Lipton et al., 2018]" 61.10 33.27 62.66 31.15 39.70 38.08 4433
MCD [Saito et al., 2018]" 66.03 33.17 62.95 29.99 44.47 39.01 4594
DAN [Long et al., 2015] 69.35 40.84 66.93 34.66 53.55 52.09  52.90
F-DANN [Wu et al., 2019] 68.56 40.57 67.32 37.33 55.84 53.67 53.88
JAN [Long et al., 2017] 67.20 43.60 68.87 39.21 57.98 48.57  54.24
DANN [Ganin et al., 2016] 71.62 46.51 68.40 38.07 58.83 58.05  56.91
MDD (random sampler) 7121 4478 69.31 4256 5210  52.70  55.44
MDD (source-balanced sampler) 76.06 47.38 71.56 40.03 57.46 5854 5850
COAL [Tan et al., 2019]"+ 7365 4258 7326 4061 5922  57.33 5840
MDD-+Explicit Alignment (basic) 69.52 44.70 69.59 40.27 53.02 53.39  55.08
MDD-+Explicit Alignment (moving avg.)! 71.37 45.26 69.69 40.28 52.92 52.69 55.37
MDD-Explicit Alignment (curriculum)’ 70.02 45.48 69.71 40.86 53.26 52.99  55.39
MDD+ Implicit Alignment 76.08 50.04 7421 4538 61.15 63.15 61.67

t Source: Data of these baseline methods are cited from [Tan et al., 2019].
! Methods using explicit class-conditioned domain alignment.
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Empirical Results: Office-31 (standard)

Method A-W D-W W - D A-D D-A W - A Avg
Source only 68.4+0.2  96.7+0.1 99.34+0.1 68.9+0.2 625+0.3 60.7+0.3 76.1
DAN [Long et al., 2015] 80.5+£0.4  97.1+0.2 99.6+0.1 78.6+0.2 63.6+0.3 62.8+0.2 80.4
DANN [Ganin et al., 2016] 82.0+£0.4  96.9+0.2 99.140.1 79.7+0.4 68.2+0.4 67.4+05 822
ADDA [Tzeng et al., 2017] 86.2+0.5  96.2+0.3 98.44+0.3 77.8+0.3 69.5+0.4 68.9+05 829
JAN [Long et al., 2017] 85.4+0.3  97.4+0.2 99.84+0.2  84.7+£0.3 68.6+0.3 70.0+0.4 843
MADA [Pei et al., 2018] 90.0 £ 0.1 97.4+0.1 99.64+0.1 87.8+0.2 70.3+0.3 66.4+0.3 85.2
GTA [Sankaranarayanan et al., 2018] ~ 89.5+0.5  97.9+0.3  99.8+0.4 87.7+0.5 72.8+0.3 71.4+0.4 865
MCD [Saito et al., 2018] 88.6+0.2 98.5+0.1 100.0+.0 9224+0.2 69.5+0.1 69.7+0.3 86.5
CDAN [Long et al., 2018] 94.1+0.1 98.6+0.1 100.0+.0 92.9+0.2 71.0+0.3 69.3+0.3 87.7
MDD [Zhang et al., 2019] 94.5+0.3 98.4+0.1 100.0+.0 93.5+£0.2 74.6+0.3 72.2+0.1 88.9
PACET [Liang et al., 2019b]* 90.8 97.6 99.8 90.8 735 73.6 87.4
CAT [Deng et al., 2019]* 94.4+0.1 98.0+0.2 100.0+0.0 90.8+1.8 72.2+0.2 70.2+0.1 87.6
MDD (source-balanced sampler) 90.4+0.4 98.7+0.1 99.9+0.1 90.4+0.2 75.0£05 73.7£0.9 88.0
MDD+Explicit Alignment? 92.3+0.1  98.2+0.1 99.8+.0 92.3+0.3 74.6+0.2 72.9+0.7 884
MDD+ Implicit Alignment 90.3+0.2 98.7+0.1 99.8+.0 92.1+0.5 75.3+0.2 74.9+0.3 88.8

* Methods using explicit class-conditioned domain alignment.
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Empirical Results: Office-Home (standard)

Method Ar—=Cl Ar—Pr Ar=Rw Cl-Ar Cl=Pr Cl=Rw Pr—Ar Pr—Cl Pr=Rw Rw—Ar Rw—Cl Rw—Pr Avg
Source only 349 50.0 580 374 419 462 385 312 604 539 412 599 461
DAN [Long et al., 2015] 436 57.0 679 458 565 604 440 436 677 631 515 743 563
DANN [Ganin et al., 2016] 456 593 701 470 585 609 461 437 685 632 518 768 576
JAN [Long et al., 2017] 459 612 689 504 597 610 458 434 703 639 524 768 583
CDAN [Long et al., 2018] 507 706 76.0 576 700 70.0 574 509 773 709 567 816 658
BSP [Chen et al., 2019] 520 686 761 580 703 702 586 502 776 722 593 819 663
MDD [Zhang et al., 2019] 549 737 778 600 714 718 612 536 781 725 602 823 681
MCS [Liang et al., 2019a]* 559 738 790 575 699 713 584 503 782 659 532 822 663
MDD +Explicit Alignment! 543 746 776 607 719 714 621 524 769 711 576 813 677
MDD (source-balanced sampler) 55.3 75.0 79.1 623 70.1 732 635 532 787 704 562 820 683
MDD+Implicit Alignment 56.2 77.9 79.2 644 731 744 642 542 799 712 581 831 69.5

* Methods using explicit class-conditioned domain alignment.
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Empirical Results: VisDA2017

method acc. (%)

JAN [Long et al., 2017] 61.6
GTA[Sankaranarayanan et al., 2018] 69.5
MCD [Saito et al., 2018] 69.8
CDAN [Long et al., 2018] 70.0
MDD [Zhang et al., 2019] 74.6
MDD+Explicit Alignment 67.1
MDD+ Implicit Alignment 75.8
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Ablation Studies: Implicit vs. Explicit Alignment

I Office-Home (RS-UT)
4 Office-Home (balanced)

Target domain accuracy (%)

66 —

Random  Explicit  Implicit
Sampling Alignment Alignment
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Ablation Studies: Robustness to Pseudo-label Errors

=3
=N
1

B Implicit alignment %

I Explicit alignment §

) ?Fi%?-ﬁ%

Accuracy after 1000 steps (%)
= N ~ ~ ~
=) = =] ~ -
] ] ] 1 1

=
'S
1

T T T T T T T
10 20 30 40 50 60 70 74 76
Pseudo-label accuracy (%)
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Ablation Studies: Class Diversity and Alignment

- 62
é %
= 60— \
‘= / x|
£ 2
S 58
-
@
2
s 56
L
=
o 54-%
=
z |’ Baseli d
E 520 aseline (random)
= ==+=Baseline (S-sampled, T-random)
3
< 50 =H= Aligned (pseudo-labels)
iy
5 =x=Aligned (oracle)
484 T T T
5 10 25 50

N: the number of unique labels per batch
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Interactions between class imbalance and distribution shift

Table: S-balanced, T-imbalanced.

SVHN—MNIST MNIST—SVHN
method mild

extreme mild

extreme
67.4+7.3 66.3+3.3 325429 28.242.3

78.2+2.8 59.1+0.8 20.946.0 20.5+3.1
DANN-+implicit 88.6+0.7 82.242.1 32.4+2.1 28.9+3.3

source only
DANN
Source Domain

Target Domain

SVHN—MNIST MNIST—SVHN
method mild

extreme mild

imbalanced

Table: S-imbalanced, T-balanced.

— imbalanced

extreme

source only
DANN

65.2+2.1 53.3+1.3 31.6+3.3 32.840.9

82.0+0.7 523423 23.443.6 25.940.5
DANN-+implicit 91.0+1.9 87.1426 34.9£0.5 31.1+29

Table: Both domains imbalanced.

SVHN—MNIST MNIST—SVHN
method mild

extreme ‘mild

extreme
60.94+5.2 51.245.9 30.6+1.3 27.1+1.7

67.6+0.8 40.54£5.5 23.4+1.6 18.842.9
DANN+implicit 88.6:£0.6 70.5:£3.6 36.3+2.5 27.9+2.4

source only
DANN
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Conclusion

@ We introduce an implicit class-conditioned domain alignment approach;
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Conclusion
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@ A more reliable measure of empirical domain divergence;
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Conclusion

@ We introduce an implicit class-conditioned domain alignment approach;
@ A more reliable measure of empirical domain divergence;

@ Implicit alignment works well under extreme within-domain class imbalance
and between-domain class distribution shift, as well as competitive results on
standard UDA tasks;
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Conclusion

@ We introduce an implicit class-conditioned domain alignment approach;
@ A more reliable measure of empirical domain divergence;

@ Implicit alignment works well under extreme within-domain class imbalance
and between-domain class distribution shift, as well as competitive results on
standard UDA tasks;

@ The proposed approach is simple to implement and orthogonal to the choice of
domain adaptation algorithms.
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. FuureWok|
Future Work

@ Other domain adaptation setups, e.g., open set domain adaptation and partial
domain adaptation.
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Future Work

@ Other domain adaptation setups, e.g., open set domain adaptation and partial
domain adaptation.

@ Cost-sensitive learning for domain adaptation.
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. FuureWok|
Future Work

@ Other domain adaptation setups, e.g., open set domain adaptation and partial
domain adaptation.

@ Cost-sensitive learning for domain adaptation.

@ More work on domain adaptation in the presence of within-domain imbalance
and between-domain class distribution shift are needed to facilitate safer use of
machine learning models in the real-world.
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Thank you!
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