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Rank Aggregation from Pairwise Comparisons

In many practical applications, the available data 
comes in the form of comparisons and choices.


Aggregating these partial preferences into a complete 
ordering is important in order to understand user 
behavior and predict future behavior.


Applications include e-commerce, recommendation 
systems, and information retrieval.
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Need for Robustness
Rank aggregation algorithms play a critical role in modern web applications.

Determining product placement,

Ordering search results,

Providing recommendations.

Their significant economic and societal impact provides strong incentives for malicious players to 
manipulate the comparison data in order to skew the outcome in their favor.

Voter fraud in elections,

Inflated purchases in e-commerce,

Click fraud in online advertising,

Designing rank aggregation algorithms that are robust to adversarial corruptions in input comparison 
data is a crucial challenge.



Our Contribution

We initiate the study of robustness in rank aggregation from pairwise comparisons under the 
Bradley-Terry-Luce model.

We propose a powerful adversarial contamination model, under which

★ Given arbitrary comparison data, we exactly characterize the extent of contamination that can 
be tolerated up to which the true BTL model parameters are uniquely identifiable. 

★ We show that robustness to adversarial contamination is a structural property of the 
comparison data itself. Not all data are created equal!

★ For a natural family of comparison data (Erdős-Rényi comparison graphs), we present a near-
quadratic time algorithm (based on Linear Programming) for parameter recovery from 
comparison data containing a non-trivial fraction of contamination. 
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The Bradley-Terry-Luce Model
[Zermelo, 1928; Bradley & Terry, 1952; Luce, 1959]

Given a universe of  items/alternatives, associates a positive weight  
with each item , and posits that for any pair , 


                                               

n wi > 0
i ∈ [n] i, j ∈ [n] × [n]

P(i ≻ j) =
wi

wi + wj

Given data consisting of pairwise comparisons whose outcomes are assumed 
to be drawn according to the BTL model, the objective is typically to recover the 
underlying item weights  (up to multiplicative scaling).w

It is a comparison model used to explain outcomes of pairwise comparisons. 



Comparison Data  Weighted Comparison Graph≡

Comparison data, which consists of pairs  of items and the observed 
probability  with which  beats  induces a weighted graph , where


• The vertex set  corresponds to the set of items .

• An edge  iff items  were compared.


• If an edge , then its weight is . 

{i, j}
̂pij i j G = (V, E)

V [n]
{i, j} ∈ E {i, j}

{i, j} ∈ E ̂pij

i ĵpij

k

̂pjk

1 n

̂pjn

2

̂p12 ̂p2n

̂p2i

̂p1i
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Adversarial Contamination Model
i ĵpij
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̂pjk
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̂p2i

Nature generates a comparison graph 
G* = ([n], E*)

̂p1i

Each edge  is labeled with a 
truthful estimate  consistent with a 

BTL model with (unknown) weights  

{i, j} ∈ E*
̂pij

w*

“Truthful Estimate”  consistent with : 

 is a good approximation for the true probability 

̂pij w*
̂pij

̂pij ≈ p*ij =
w*i

w*i + w*j

Practical example:  is the empirical fraction of times  beats  out 
of  independent comparisons between them.

̂pij i j
L
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Contaminated comparison graph 
G = ([n], E)

Adversary

Add edges with spurious labels
Delete existing edges and their labels

Corrupt labels on existing edges



Existing Methods… Don’t Work

| Efficient, consistent algorithms for parameter estimation 
in the uncontaminated setting.

Crucially rely on the assumption that input data is 
truthfully generated.

However… these are not robust.

Their recovery guarantees do not hold in the presence of adversarial corruptions!

Negahban et al., 2012 
Hajek et al., 2014 
Chen and Suh., 2015 
Maystre and Grossglauser, 2015 
Shah et al., 2016 
Agarwal et al., 2018 
Hendrickx et al., 2019 
Chen et al., 2019 
           ⋮

Parameter estimation under the (uncontaminated) BTL model has received a lot of attention in the ML 
community, and is a very well understood problem.
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A Challenging Example

1

2

3

4

5p*12 = 1/2 p*14 = 1/3 p*34 = 1/2

p*45 = 1/3

p*35 = 1/3

1

2

3

4

5p*12 = 1/2 p*14 = 1/3 p*34 = 1/2

p*45 = 1/3

p*35 = 1/3

Truthful comparison graph entirely consistent with

w* = (1,1,2,2,4)/10

Adversary



A Challenging Example

1

2

3

4

5p*12 = 1/2 p*14 = 1/3 p*34 = 1/2

p*45 = 1/3

p*35 = 1/3

1

2

3

4

5p*12 = 1/2 p14 = 3/4 p*34 = 1/2

p*45 = 1/3

p*35 = 1/3

Truthful comparison graph entirely consistent with

w* = (1,1,2,2,4)/10

Contaminated graph entirely consistent with

w = (3,3,1,1,2)/10

Adversary

No evidence of corruption in the contaminated graph!

Items with the lowest scores have highest scores 
post corruption!



Exact Condition for Identifiability of w*

Theorem 1. (Cut Majority Condition)   
Given an arbitrary, contaminated 
comparison graph , the true weights  
are uniquely identifiable if and only if every 
cut in  has strictly more uncorrupted 
edges than corrupted edges crossing the 
cut. 

G w*

G



Takeaway: Robustness is a Structural Property

Bad news! Certain topologies are 
fundamentally vulnerable to adversarial 
contamination. 


For such topologies, even a marginal 
amount of corruption can make parameter 
recovery fundamentally impossible.


The structure of the comparison graph plays a crucial role in determining resilience to adversarial corruption.

Fraction of corrupted edges incident on any vertex 
is , yet the cut majority condition fails. ≤ O(1/n)

Sparse cuts across dense subgraphs can easily 
be exploited, even by a limited budget adversary!
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Erdős-Rényi Graphs are Highly Robust to 
Contamination

Given a parameter , an Erdős-Rényi 
graph  is a random graph over  vertices, 
where each edge  is sampled 
independently with probability . 

p ∈ [0,1]
Gn,p n

{i, j}
p

These graphs exhibit strong connectivity 
properties due to which they can tolerate large 
degrees of corruption.

Sampled with prob. p



Budget Constrained Adversary

Nature draws an ER comparison graph

 with  for a 


sufficiently large constant 
G* ∼ Gn,p p ≥ (c log n)/n

c

Adversary
“Budget” limited by γ < 1

Contaminated graph  such that for any vertex , 

|additions + deletions + corruptions| incident on  

in  is   

G i
i

G ≤ γ E*(i)

i i
total contamination   ≤ γ E*(i)deg  in (i) G* def= E*(i)



Sharp Threshold Condition for Identifiability
Theorem 2. (Vertex Majority Condition) For 

 , with high probability over the 
generation of the graph, 

The true weights are uniquely identifiable in the 
contaminated graph  if the fraction of total 
contamination per vertex                      

. 

Conversely, the true weights are are not uniquely 
identifiable in the contaminated graph  if the 
fraction of total contamination per vertex 

,  

where  is any arbitrarily small positive constant.

G* ∼ Gn,p

G

γ < 1/4 − ϵ

G

γ > 1/4 + ϵ

ϵ
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Recovery Algorithm for Erdős-Rényi Graphs 
Idea. Corrupted edge labels are detectable.

The ratio of probabilities  approximately determines the relative ratio of weights .pij /pji wi/wj
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In cycle , which contains a 
bad edge, 


 bounded away from 

(2,4,7,2)

p24

p42

p47

p74

p72

p27
1

Inconsistent cycles 
provide evidence of 

corruption!



Linear Programming Relaxation
Given contaminated graph , decision variables  for every edge ,G = ([n], E) x(e) e ∈ E

Minimize ∑
e∈E

x(e)

Subject To ∑
e∈C

x(e) ≥ 1 ∀C ∈ ℂ

∑
e∈E(v)

x(e) ≤ γ |E(v) | ∀v ∈ V

0 ≤ x(e) ≤ 1 ∀e ∈ E

Identify edges whose deletion leaves us with 
a consistent subgraph

Hitting set constraint for inconsistent cycles

Budget constraint for every vertex

Relaxation of integer constraint for edges

Feasible and computationally efficient because of strong connectivity properties of Erdős-Rényi 
graphs. For sparse graphs, this can be done in near quadratic  time. O(n2+o(1))



Linear Programming Rounding
Given a feasible solution  to the LP, discard any edge  with  for a 

suitably chosen threshold  , resulting in a pruned graph . 
x ∈ [0,1]|E| e ∈ E x(e) > T

T G̃ = ([n], Ẽ)

The surviving graph  is connected.

The labels on surviving edges  satisfy a uniform deviation bound.

G̃
e ∈ Ẽ

Pass this pruned graph to any existing non-robust estimation algorithm. 

We chose ASR [Agarwal et al., 2018], and analyzed it to give guarantees for the recovered weights.

This is non-trivial to prove. We prove a robust connectivity property of Erdős-Rényi graphs, 
which forms a central part of the proof of the above two claims.



Recovery Guarantees
Theorem 3. When the initial truthful comparison graph  , and the fraction of total 

contamination per-vertex in the contaminated graph , the LP based algorithm given

G* ∼ Gn,p

γ = O ( log np
log n )

perfect data (  for  ) recovers the true weights exactly. ̂pij = p*ij {i, j} ∈ G*

sampled data (  for  ) returns an estimate  such that

.


̂pij ∼ Binomial(p*ij , L) {i, j} ∈ G* w

∥w − w*∥1 ≤ O ( log n
L )

The former guarantee is a special case of the latter, corresponding to the limit .L → ∞



Sample complexity bounds match the best known bounds for the uncontaminated setting up to constants.

Robustness to adversarial contamination comes with no statistical penalty!*

Sparse regime [  edges]   fraction of corrupted comparisons per item.

Dense regime [  edges, for any constant ]  constant fraction of corrupted comparisons per item.

O(n log n) ⟹ O(log log n/log n)
O(n1+ϵ) ϵ ⟹

*How much contamination can we tolerate?

Remarks



Experiments

Error in the returned estimates with an 
increasing corruption rate in synthetic data. 

ASR - Accelerated Spectral Ranking, 

(Spectral Method) [Agarwal et al., 2018] 


     

HMM - Hunter’s Minorization-Maximization,

(Maximum Likelihood) [Hunter, 2004]



Conclusion
We initiated the study of robustness in rank aggregation in the BTL model by introducing a powerful 
contamination model, under which


★ We characterized the exact necessary and sufficient condition for structural identifiability of the true BTL 
parameters for arbitrary comparison graphs.


‣ Robustness is a structural property of comparison graphs. One cannot hope to be robust for arbitrary topologies.


★ For the family of Erdős-Rényi comparison graphs, we proved a simpler necessary and sufficient 
condition for identifiability.


‣ Identifiability in Erdős-Rényi comparison graphs has a sharp threshold at ~25% corruption per item.


★ For Erdős-Rényi comparison graphs, we provided an efficient linear-programming based algorithm for 
parameter estimation that could tolerate up to  fraction corruption per item in the 
sparse regime, and constant fraction corruption per item in the dense regime.


‣ Sample complexity bounds match the usual uncontaminated setting up to constants.

O(log log n/log n)



Thank You!


