
Preselection Bandits (Paper ID: 4941)

Viktor Bengs and Eyke Hüllermeier
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Setting: Formalization

• Given n arms (choice options) a1, . . . , an

• An agent (learner) and a user (environment)
• A time period with time steps 1, 2, . . . ,T

• In each time step t ∈ {1, 2, . . . ,T} :

? Agent preselects a subset St ⊂ {a1, . . . , an} of arms for the user
? User chooses one arm from this subset St
? Chosen arm is replenished
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? Chosen arm is replenished

 How exactly?

? Assumption: User does not act perfectly w.r.t. its preferences
⇒ Makes mistakes, i.e., chooses not mandatory the most preferred arm in a
subset

? Reasons: time constraints, incomplete information about the arms, . . .
⇒ We model this choice behavior as an i.i.d. random process
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2. How can we learn it in an online learning framework?
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Contribution

1st contribution: Introduction of the Preselection Bandits
Preselection Bandits: Exploration vs. exploitation of the optimal preselection

? Using preselections that have turned out to be appealing in the past
? Trying out other, possibly even better preselections, but whose appeal is not

precisely known so far
2nd contribution: Algorithmic solutions for two variants of the problem

• Restricted Preselection – All subsets of
a fixed size k ∈ N≥2 are admissible
preselections

 Combinatorial challenging

• Flexible Preselection – All non-empty
subsets of arms are admissible
preselections

 Trade-off: Size vs. information gain

Related settings: Battling Bandits (Saha and Gopalan, 2018, 2019), Stochastic click models
(Zoghi et al., 2017; Lattimore et al., 2018), MNL Bandits (Agrawal et al., 2016, 2017)
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User Choice Modeling

Let us specify: ”User chooses one arm from S w.r.t. some random process”

arms a1 a2 . . . an
⇓ ⇓ ⇓

strengths θ1 θ2 . . . θn

• θi ∈ R+ is the strength of arm ai

• Pr(user chooses arm ai ∈ S) = θi∑
aj∈S θj

⇒ Probability for choosing ai is proportional to its strength (MNL model)
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User Choice Modeling: Preciseness

• Suppose θi is decomposable as θi = vγi
? vi ∈ R+ : latent utility of arm ai (w.l.o.g. vi 6= vj if i 6= j)
? γ ∈ (0,∞) : degree of user’s preciseness

Pr(user chooses arm ai ∈ S) = θi∑
aj∈S θj

= vγi∑
aj∈S vγj

→


1
|S| , lim

γ↘0
,

1ai =argmax
aj ∈S

vj , lim
γ↗∞

.

⇒ γ small: imprecise user
γ large: precise user
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Optimal Preselection

1st Question: What is a good preselection of arms?

• Suppose latent utilities v1, v2, . . . , vn were known

• Compute expected utility of a set S ⊂ {a1, . . . , an} :

U(S) =
∑
ai∈S

vi · Pr(user chooses arm ai ∈ S) =
∑
ai∈S

vi ·
vγi∑

aj∈S vγj
=
∑

ai∈S v1+γ
i∑

aj∈S vγj

• S : Set of admissible preselections

⇒ Optimal preselection is S∗ = argmax
S∈S

U(S)

⇒ Performance measure for learner: Regret at time t, i.e., U(S∗)− U(St)
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Variants of Preselection

1st Question: What is a good preselection of arms?

It depends on the set of admissible preselections S :

• If S contains all non-empty subsets of arms (Flexible Preselection)

 The optimal preselection S∗ is just the single best arm

• If S contains all subsets of a fixed size k ∈ N≥2 (Restricted Preselection)
? Due to γ not necessarily consisting of the best arms!

 
small γ (imprecise user)  S∗ has to consist of the best arms
large γ (precise user)  S∗ has only to entail the best arm

? In general: Composition of best and worst arms

 Allows to capture decision-making biases of users (”decoy effect”)
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Online Learner for Restricted Preselection

2nd Question: How to learn the optimal preselection?

In the following: Restricted preselections (S = all subsets of a fixed size k ∈ N≥2)

• Problem: Difficult to learn latent utilities v1, v2, . . . , vn directly
• Use relative utilities instead: aJ is some reference arm

v1, v2, . . . , vn → (v1/vJ )γ︸ ︷︷ ︸
O1,J

, (v2/vJ )γ︸ ︷︷ ︸
O2,J

, . . . (vn/vJ )γ︸ ︷︷ ︸
On,J

 Why?

⇒ argmax
S

U(S; (vi )n
i=1) = argmax

S
U(S; (O1/γ

i,J )n
i=1)

 How to learn the Oi,J ’s? MNL model=⇒ Oi,J =
(

vi
vJ

)γ
≈ wi,J

wJ,i
=: Ôi,J

wi,j = no. of times arm ai was chosen, while aj was also present in the preselection

 Which reference arm aJ ? =⇒ The empirically most chosen so far!
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=: Ôi,J

wi,j = no. of times arm ai was chosen, while aj was also present in the preselection

 Which reference arm aJ ? =⇒ The empirically most chosen so far!

8 Theoretical analysis ICML 2020



Online Learner for Restricted Preselection

2nd Question: How to learn the optimal preselection?

In the following: Restricted preselections (S = all subsets of a fixed size k ∈ N≥2)

• Problem: Difficult to learn latent utilities v1, v2, . . . , vn directly
• Use relative utilities instead: aJ is some reference arm

v1, v2, . . . , vn → (v1/vJ )γ︸ ︷︷ ︸
O1,J

, (v2/vJ )γ︸ ︷︷ ︸
O2,J

, . . . (vn/vJ )γ︸ ︷︷ ︸
On,J

 Why?

⇒ argmax
S

U(S; (vi )n
i=1) = argmax

S
U(S; (O1/γ

i,J )n
i=1)

 How to learn the Oi,J ’s? MNL model=⇒ Oi,J =
(

vi
vJ

)γ
≈ wi,J

wJ,i
=: Ôi,J
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The TRCB algorithm
Our algorithmic solution: Thresholding-Random-Confidence-Bound (TRCB) algorithm

෠𝑂1,𝐽 + 𝑐1,𝐽

෠𝑂1,𝐽 − 𝑐1,𝐽

෠𝑂1,𝐽

𝑂1,𝐽

෢𝑂2,𝐽 − 𝑐2,𝐽

𝑂2,𝐽

෠𝑂2,𝐽

෠𝑂2,𝐽 + 𝑐2,𝐽

Arm 1 Arm 2                       …                      Arm n

෠𝑂𝑛,𝐽 + 𝑐𝑛,𝐽

෠𝑂𝑛,𝐽 − 𝑐𝑛,𝐽

෠𝑂𝑛,𝐽

𝑂𝑛,𝐽

• For each relative utility 𝑂𝑖,𝐽, compute confidence region based on ෠𝑂𝑖,𝐽

9 Theoretical analysis ICML 2020



The TRCB algorithm
Our algorithmic solution: Thresholding-Random-Confidence-Bound (TRCB) algorithm

෠𝑂1,𝐽

𝑂1,𝐽

𝑂2,𝐽

෠𝑂2,𝐽

Arm 1 Arm 2                       …                      Arm n

෠𝑂𝑛,𝐽

𝑂𝑛,𝐽

• Sample a random value inside each confidence region

9 Theoretical analysis ICML 2020



The TRCB algorithm
Our algorithmic solution: Thresholding-Random-Confidence-Bound (TRCB) algorithm

෠𝑂1,𝐽

𝑂1,𝐽

෣→ 𝑂1,𝐽
𝑇𝑅𝐶𝐵

𝑂2,𝐽

෠𝑂2,𝐽

Arm 1 Arm 2                       …                      Arm n

෠𝑂𝑛,𝐽

𝑂𝑛,𝐽

→ ෣𝑂𝑛,𝐽
𝑇𝑅𝐶𝐵

෣𝑂2,𝐽
𝑇𝑅𝐶𝐵

admissible 
relative
utilities
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Arm 1 Arm 2                       …                      Arm n
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Arm 2                       …                      Arm n

෠𝑂𝑛,𝐽

𝑂𝑛,𝐽

→ ෣𝑂𝑛,𝐽
𝑇𝑅𝐶𝐵
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relative
utilities

Efficiently
possible by
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• maximize sampled expected utility 𝑆𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑆 𝒰(𝑆;
෣𝑂𝐽
𝑇𝑅𝐶𝐵

1/𝛾
)

• Threshold the sampled values (to prevent inconsistencies)

9 Theoretical analysis ICML 2020



Contribution (continued)

Our contribution: Introduction of the Preselection Bandits

• Restricted Preselection – All subsets
of a fixed size k ∈ N≥2 are
admissible preselections

? Our suggestion: The Thresholding-
Random-Confidence-Bound (TRCB)
algorithm

? Upper bound on cumulative regret:
O(
√

n T log(T ))

? Lower bound: Ω(
√

n T )

• Flexible Preselection – All non-empty
subsets of arms are admissible
preselections

? Our suggestion (in the paper): The
Confidence-Bound-Racing (CBR)
algorithm

? Upper bound on cumulative regret:
O(n log(T ))

? Lower bound: Ω(n log(T ))

+ Experimental study in the paper
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Further research questions

• What if the strength parameters θ1, θ2, . . . , θn also depend on the current
user j?

• Can we incorporate feature information about the arm xi and feature
information about the user yj?

• Different choice models
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