

Task-Oriented Active Perception and Planning in Environments with Partially Known Semantics

MAHSA GHASEMI, ERDEM ARINÇ BULGUR, AND UFUK TOPCU

INTERNATIONAL CONFERENCE ON MACHINE LEARNING JULY 12-18, 2020

Integrating Data into Decision Making Process

Setting

- Sequential decision making
- Partial knowledge of environment
- Continual information gathering

Challenge

How to simultaneously perceive and plan with efficiency and performance guarantee?

Contributions

- 1. Provide guarantee on task success
- 2. Characterize information utility
- 3. Guide active perception while planning

System Dynamics as Markov Decision Process

An MDP is a tuple $\mathcal{M} = (\mathcal{S}, s_{init}, \mathcal{A}, \mathcal{T})$

- S is a finite discrete state space
- *s*_{init} is an initial state
- \mathcal{A} is a finite discrete action space
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0,1]$ is a probabilistic transition function such that for all $s \in \mathcal{S}$ and for all $a \in \mathcal{A}$, $\sum_{s' \in \mathcal{S}} \mathcal{T}(s,a,s') = 1$

Memoryless deterministic policies $\pi: \mathcal{S} \to \mathcal{A}$

Induced Markov chain $\mathcal{M}^{\pi} = (\mathcal{S}^{\pi}, s_{init}^{\pi}, \mathcal{T}^{\pi})$

- $S^{\pi} = S$
- $s_{init}^{\pi} = s_{init}$
- $\mathcal{T}^{\pi}: \mathcal{S} \times \mathcal{S} \to [0,1]$ is such that for all $s,s' \in \mathcal{S}$, $\mathcal{T}^{\pi}(s,s') = \mathcal{T}(s,\pi(s),s')$

An MDP

Environment Model and Observation Model

An environment model is a tuple $\mathcal{E} = (\mathcal{S}, \mathcal{AP}, \bar{\mathcal{L}})$

- S is a finite discrete state space
- \mathcal{AP} is a set of atomic propositions
- $\bar{\mathcal{L}}: \mathcal{S} \to 2^{\mathcal{AP}}$ is a true labeling function

An observation model is a joint probability distribution $\mathcal{O}: \mathcal{S} \times \mathcal{S} \times \mathcal{AP} \times \{\mathit{True}, \mathit{False}\} \rightarrow [0,1].$

Belief at time t is a probabilistic labeling function $\mathcal{L}_t: \mathcal{S} \times 2^{\mathcal{AP}} \to [0,1]$ such that for all $s \in \mathcal{S}$, $\sum_{P \subset \mathcal{AP}} \mathcal{L}_t(s,P) = 1$.

An MDP with partial semantics

Task Specification with Linear Temporal Logic

• Linear temporal logic (LTL): A formal language with logical and temporal operators

Suitable for high-level task specification

- Verifiable
 - Qualitative (almost surely)
 - Quantitative (probabilistically)
- Close to human language
 - Formal translation of natural language instructions into LTL specifications [E.g., LTLMoP toolkit by Finucane, Jing and Hadas Kress-Gazit, 2010]

 \Diamond : eventually \Box : always \mathcal{U} : until

Automaton Representation of Task

Task specification as LTL formula (with probabilistic guarantee)

- An LTL formula can be transformed into an automaton
 - A transition system for a task
 - Captures task progress
 - A run ending in the accepting state completes the task

Formal Problem Statement

Given

- An MDP $\mathcal{M} = (\mathcal{S}, s_{init}, \mathcal{A}, \mathcal{T})$
- An environment model with unknown labeling function $\mathcal{E} = (\mathcal{S}, \mathcal{AP}, \Box)$
- An observation model O
- A syntactically co-safe LTL task specification φ

Find

A policy π that maximizes the probability of satisfying the task conditioned on the true labeling function, i.e.,

$$\pi^* = \operatorname{argmax}_{\pi} Pr(\mathcal{M}^{\pi} \models \varphi \mid \bar{\mathcal{L}})$$

Perception module receives data sampled according to the observation model \mathcal{O}

The agent updates its learned model of the environment in a Bayesian approach

- Assumption: Atomic propositions are mutually independent
- Frequentist update if an observation model unavailable

The agent checks whether its learned model of the environment has significantly changed

- Jensen-Shannon divergence
- A hyperparameter determining the frequency of replanning

The agent estimates the most probable environment configuration

- According to the current model of the environment
- Maximum a posteriori estimation

The agent synthesizes an optimal policy according to the estimated environment configuration

- Generating the product MDP (dynamics + task)
- Computing the optimal policy using a linear program

The agent assesses the risk due to the perception uncertainties

Statistical verification of the induced Markov chain

$$\hat{\mathbb{E}}_{\mathcal{L} \sim Dist(\mathcal{L})} \left[Pr \left(\mathcal{M}_{\mathcal{D}}^{\pi_t} \models \varphi \right) \right] = \frac{1}{N} \sum_{i=1}^{N} Pr \left(\mathcal{M}_{\mathcal{D}}^{\pi_t} \models \varphi | \mathcal{L}_i \right)$$

Defining a risk parameter

$$\mathcal{R}(\mathcal{M}_{\mathcal{D}}, \pi_{t}, \mathcal{L}_{t}, \varphi) = \left| Pr(\mathcal{M}_{\mathcal{D}}^{\pi_{t}} \models \varphi \,|\, \hat{\mathcal{L}}_{t}) - \mathbb{E}_{\mathcal{L} \sim Dist(\mathcal{L})} \left[Pr\left(\mathcal{M}_{\mathcal{D}}^{\pi_{t}} \models \varphi\right) \right] \right|$$

A hyperparameter determining the willingness of the agent to risk

The agent finds an active perception strategy to reduce its perception uncertainty

- Local search over a bounded horizon
- Criteria:

high

- Forward and backward reachability
- Remaining in the same stage of the task
- Reducing task-related uncertainty

Go to informative state

Find an "informative state"

Drone Navigation in Simulated Urban Environment

- AirSim^[1] simulation environment
- A drone navigating in an urban environment
- Task: Reach a flagged building while avoiding collision
- **Dynamics:** Planar motion with constant altitude

- Sensing:
 - Exact localization
 - 4 RGB cameras with 90° field of view
 - 4 depth sensing cameras with 90° field of view

Processing Image and Depth Data

Simulation Results

Navigation with exact knowledge of the semantic labeling

Navigation with the proposed taskoriented active perception and planning

Conclusion and Future Directions

Conclusion:

- Studied planning in environments with partially known semantics
 - Guarantee over task performance
 - Assessment of risk due to imperfect knowledge
- Proposed a task-oriented active perception and planning framework that integrates learning through perception with decision-making under uncertainty

Future Directions:

- Extending the framework to settings with uncertain or unknown dynamics
- Using calibrated neural networks for perception module
- Incorporating side knowledge on the correlation between the atomic propositions

Thank you!

Task-Oriented Active Perception and Planning in Environments with Partially Known Semantics

Mahsa Ghasemi, Erdem Arınç Bulgur, and Ufuk Topcu