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(2) Recognize objects’ physical properties
(3) Predict future movements
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For example

Different physical parameters 
lead to different motions.

Estimating physical parameter 
by comparing mental 
simulation with observation

Larger stiffness Smaller stiffness

Larger gravity Smaller gravity
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We propose a model that jointly
(1) Estimates the physical properties
(2) Refines the particle locations
using
(1) a learned visual prior
(2) a learned dynamics prior
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We evaluate our model in environments involving interactions between 
rigid objects, elastic materials, and fluids.
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Within a few observation steps, our model is able to 
(1) refine the state estimation and reason about the physical properties
(2) make predictions into the future.
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unknown physical parameters?
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Questions remains:
(1) Make strong assumptions on the 
structure of the system
(2) Usually time-consuming
(2) Prone to local optimum
(3) Lacking ways to handle visual inputs



Our Work

We proposed Visually Grounded Physics Learner (VGPL) to 

(1) bridge the perception gap, 

(2) enable physical reasoning from visual perception, and

(3) perform dynamics-guided inference to directly predict the optimization results,

which allows quick adaptation to environments with unknown physical properties.
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Dynamics Prior

:  Particle position

:  Instance grouping

:  Rigidness of each instance 

:  Physical parameters Li, Wu, Tedrake, Tenenbaum, Torralba, “Learning Particle Dynamics for 
Manipulating Rigid Bodies, Deformable Objects, and Fluids,” ICLR’19
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Results
We will mainly investigate how accurate the following estimations are and 
whether they help with future prediction:

(1) : Rigidness estimation

(2) : Parameter estimation

(3) :  : Position refinement
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Quantitative results on Future Prediction
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In summary

We proposed Visually Grounded Physics Learner (VGPL) to 

(1) simultaneously reason about physics and make future predictions 

based on visual and dynamics priors.

(2) We employ a particle-based representation to handle rigid bodies, 

deformable objects, and fluids.

(3) Experiments show that our model can infer the physical properties 

within a few observations, which allows the model to quickly adapt to 

unseen scenarios and make accurate predictions into the future.



Thank you for watching!


