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How much objective knowledge
about the external world can be
learned through egocentric
prediction?
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Question-answering (in English) as an evaluation tool

for investigating how much environment knowledge
is encoded in an agent’s internal representation

e Intuitive: simply ask an agent what it knows about its world
and get an answer back

e Open-ended: pose arbitrarily complex questions to an agent



Environment




Environment

Environment
e Unity-based; runs at 30 fps
e 96 x /72 RGB first-person view
e 50 objects types
10 colors
3 sizes

Agent
e First person view
e 8-D action space:
Move-{forward, backward, left, right}
Look-{up, down, left, right}




Training task: Exploration

+1 reward for unvisited object
O reward for visited object

rewards refresh once all visited

Top-down view shown for illustration purposes. The agent only has access to first-person observations.



Training task: Exploration

Jop:Llown Vew +1 reward for unvisited object
O reward for visited object

Agent View

rewards refresh once all visited

Top-down view shown for illustration purposes. The agent only has access to first-person observations.



Evaluation probe: Question-answering

What is the color of the bed?
How many wardrobes are there?
What is the object near the bed?

Is there a basketball in the room?

Top-down view shown for illustration purposes. The agent only has access to first-person observations.



Evaluation probe: Question-answering

Question type Template # QA pairs
Attribute What is the color of the <shape>? 500
What shape is the <color> object? 500
Count How many <shape> are there? 200
How many <color> objects are there? 40
Exist Is there a <shape>? 100
Compare + Count Are there the same number of <color1> objects as <color2> objects? 180
Are there the same number of <shapel1> as <shape2>? 4900
Relation + Attribute  What is the color of the <shapel> near the <shape2>? 24500
What is the <color> object near the <shape>? 25000

Questions are programmatically generated in a manner similar to CLEVR (Johnson et al., 2017)
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Evaluation probe: Question-answering

stop gradient

|—>
How many

wardrobes
are there?

Top-down view shown for illustration purposes. The agent only has access to first-person observations.

Question-Answering Decoder

Gradients from question-answering are not
backpropagated into the agent.

—> Three
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Setup

How many wardrobes are there?
What is the color of the bed?
What is the object near the bed?

Is there a basketball in the room?

0] (i)
During training, the agent explores During evaluation, we probe the agent’s
and learns to build representations internal representations on a
from egocentric observations question-answering task

Top-down view shown for illustration purposes. The agent only has access to first-person observations.
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Agent architecture
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Agent architecture
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Agent architecture

Policy RNN .

——————

Observation
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Agent architecture

Action

Policy RNN

Observation

———————
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Agent architecture

Action

Observation
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Agent architecture
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Agent architecture
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Agent architecture

Predictive Loss
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Agent architecture

Predictive Loss
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i) Action-conditional CPC
(Guo et al., 2018)
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i) SimCore
(Gregor et al., 2019)

e Action-conditioned forward prediction
e Multiple steps into the future
e Self-supervised
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Agent architecture

Predictive Loss

QA Decoder

i) Action-conditional CPC
(Guo et al., 2018)
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Agent architecture

Predictive Loss

QA Decoder

i) SimCore

i) Action-conditional CPC
(Gregor et al., 2019)

(Guo et al., 2018)
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Gradients from the question-answering decoder
not backpropagated into the agent
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Agent architecture

Predictive Loss

QA Decoder

i) Action-conditional CPC
(Guo et al., 2018)
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Baselines and Oracle

Predictive Loss

QA Decoder

Baselines
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Baselines and Oracle

Predictive Loss

QA Decoder

Baselines

Question-only: no vision
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Baselines and Oracle

Predi(XLoss

QA Decoder

Baselines

e Question-only: no vision
e |LSTM: no auxiliary predictive loss
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Baselines and Oracle

Predictive Loss

QA Decoder

Baselines

Question-only: no vision
LSTM: no auxiliary predictive loss

Predictive losses

CPCIA (Guo et al,, 2018)
SimCore (Gregor et al., 2019)
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Baselines and Oracle

_____

Predictive Loss

QA Decoder

Baselines

e Question-only: no vision
e |LSTM: no auxiliary predictive loss

Predictive losses

e CPCIJA (Guo et al, 2018)
e SimCore (Gregor et al., 2019)

Oracle

e No SG: QA decoder without stop gradient
similar to Embodied / Interactive Question Answering
(Das et al., 2018, Gordon et al., 2018)
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Results: shape questions

What shape is the <color> object?

1.0
—— NoSG —— Lstm  Oracle
—— SimCore —— Q-only
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Results: overall

70

63%

Top-1 QA Accuracy

Question-only  LSTM CPCIA SimCore Oracle: No SG
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Results
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Baseline: Question-only  0.29 0.04 0.1 0.63 0.24 0.24 0.49 0.70 0.04 0.09
LSTM 0.31 0.04 0.1 0.54 0.34 0.38 0.53 0.70 0.04 0.09
CPC|A 0.32 0.06 0.08 0.64 0.39 0.39 0.50 0.70 0.06 0.10
SimCore 0.60 0.72 0.81 0.72 0.39 0.57 0.56 0.73 0.30 0.59
Oracle: No SG 0.63 0.96 0.81 0.60 0.45 0.57 0.51 0.76 0.41 0.72

Table 2: Top-1 accuracy on question-answering tasks.
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O: What is the aquamarine object?
A: Grinder

Top Down View

Agent View

Top-3 answer Language
.. Question: What is the aquamarine object ?
pl’edICtIOHS True answer: grinder
Predicted Answers Answer Probabilities
book 0.0767
soap 0.0671 i
toilet 0.0385

Answer
probabilities

d

"~ P(“Grinder")
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O: How many blue objects are there?
A: One

Top Down View

Agent View

Top-3 answer "
guage
dicti Question: How many blue objects are there ?
pre Ictions True answer: 1

4 0.4163
Predicted Answers 3 03\45@ Probabilities
20.

1696 P(uonen)

w N

I * | T~ P(“Three”)




0O: How many yellow objects are there?

A: Four

Top-3 answer
predictions

Top Down View

Agent View

. ganguage
Question: How many yellow objects are there ?
True answer: 4

Predicted Answers Answer Probabilities /
4 0.3543
20.2673 = ‘
3 0.2338 .
40 /

™~ P(“Three")

P(“two")

P(“four”)




Compositional generalization

Train-Test split

Question What shape is the <color> object?
& o 1.0
R > $Q @@ —— Train question set SimCore
o ¢ Q . % —— Test question set
Ll y p— Question-only
ball >
. O
grinder © 06
o : o
3 chair S
< ::‘ 0.4
< o
0.2
bed

0.
Seen: What shape is the blue object? Bed 800 025 050 0.75 1t.oo 125 150 175 200
steps e

Seen: What shape is the green object? Ball
Unseen: What shape is the green object? Bed
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Predictive Loss

QA Decoder
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Predictive Loss

QA Decoder

stop

Top-down Map
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Top-down map prediction

Agent View

Question: What is the aquamarine object ?

True answer: grinder

Predicted Answers

book 0.0767
soap 0.0671
toilet 0.0385

Language

Top Down View

Answer Probabilities

Top Down Pred

Value And Rewards

Policy

80

60

40

0.0
0.0
0.0
-0.0
-0.0
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Conclusions

timet

Top-down
map

time t+k

_____ - /Pre;lon Loss

- 0-0-0---0—H

stop gradient

How many
wardrobes

are there?

Simulation Network

Question-Answering Decoder

— Three

Question-answering to probe
internal representations, enabling
evaluation of agents using natural
linguistic interactions.

Self-supervised predictive agents,
such as SimCore, capture
decodable knowledge about the
environment, while non-predictive
agents and CPC|A don't.

Generalization of the decoder
suggests some degree of
compositionality in internal
representations.

arxiv.org/abs/2006.01016



