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How much objective knowledge 
about the external world can be 
learned through egocentric 
prediction?



● Intuitive: simply ask an agent what it knows about its world
and get an answer back

● Open-ended: pose arbitrarily complex questions to an agent

Question-answering (in English) as an evaluation tool
 

for investigating how much environment knowledge
is encoded in an agent’s internal representation



Environment
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Environment
● Unity-based; runs at 30 fps
● 96 x 72 RGB first-person view
● 50 objects types

10 colors
3 sizes

Agent
● First person view
● 8-D action space:

Move-{forward, backward, left, right}
Look-{up, down, left, right}

Environment
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Training task: Exploration

+1 reward for unvisited object
 0 reward for visited object

rewards refresh once all visited

Top-down view shown for illustration purposes. The agent only has access to first-person observations. 7



Training task: Exploration

+1 reward for unvisited object
 0 reward for visited object

rewards refresh once all visited

Top-down view shown for illustration purposes. The agent only has access to first-person observations. 8



Evaluation probe: Question-answering
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What is the color of the bed?

How many wardrobes are there?

What is the object near the bed?

Is there a basketball in the room?

...

Top-down view shown for illustration purposes. The agent only has access to first-person observations.
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Evaluation probe: Question-answering

Questions are programmatically generated in a manner similar to CLEVR (Johnson et al., 2017)



Evaluation probe: Question-answering

11Top-down view shown for illustration purposes. The agent only has access to first-person observations.

Gradients from question-answering are not 
backpropagated into the agent.



Setup

12Top-down view shown for illustration purposes. The agent only has access to first-person observations.

                  (i)
During training, the agent explores 
and learns to build representations 
from egocentric observations

                                (ii)
During evaluation, we probe the agent’s 
internal representations on a 
question-answering task

How many wardrobes are there?

What is the color of the bed?

What is the object near the bed?

Is there a basketball in the room?

...



Agent architecture
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Agent architecture
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Agent architecture

15



Agent architecture

16



Agent architecture
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Agent architecture
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Agent architecture
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Agent architecture
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Agent architecture
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● Action-conditioned forward prediction
● Multiple steps into the future
● Self-supervised



Agent architecture
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Agent architecture
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Gradients from the question-answering decoder 
not backpropagated into the agent



Agent architecture
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Baselines and Oracle
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Baselines



Baselines and Oracle
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Baselines

● Question-only: no vision



Baselines and Oracle
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Baselines

● Question-only: no vision
● LSTM: no auxiliary predictive loss

X



Baselines and Oracle
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Baselines

● Question-only: no vision
● LSTM: no auxiliary predictive loss

Predictive losses

● CPC|A (Guo et al., 2018)
● SimCore (Gregor et al., 2019)



Baselines and Oracle
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Baselines

● Question-only: no vision
● LSTM: no auxiliary predictive loss

Predictive losses

● CPC|A (Guo et al., 2018)
● SimCore (Gregor et al., 2019)

Oracle

● No SG: QA decoder without stop gradient
similar to Embodied / Interactive Question Answering
(Das et al., 2018, Gordon et al., 2018)

X



Results: shape questions
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SimCore

Question-only

Oracle

CPC|A

LSTM

Training steps



Results: overall
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Results
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Q: What is the aquamarine object?
A: Grinder
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Top-3 answer 
predictions Answer 

probabilities

P(“Grinder”)



Q: How many blue objects are there?
A: One

P(“One”)

P(“Three”)

Top-3 answer 
predictions



Q: How many yellow objects are there?
A: Four

P(“four”)

P(“two”)

P(“Three”)

Top-3 answer 
predictions



Unseen: What shape is the green object? Bed

Compositional generalization
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...
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Seen: What shape is the blue object? Bed
Seen: What shape is the green object? Ball

SimCore



Top-down map prediction
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Top-down map prediction
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Top-down Map



Top-down map prediction

39



Conclusions
● Question-answering to probe

internal representations, enabling 
evaluation of agents using natural 
linguistic interactions.

● Self-supervised predictive agents, 
such as SimCore, capture 
decodable knowledge about the 
environment, while non-predictive 
agents and CPC|A don’t.

● Generalization of the decoder 
suggests some degree of 
compositionality in internal 
representations.

● arxiv.org/abs/2006.01016


