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Intro

Preference Learning Problem Description

Suppose we have n items and we'd like to obtain one universal
ranking of these items.
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One cannot ask someone to rank them all for large n.

Instead, we ask for k-wise comparisons, k < n, and try to learn
the complete preference ordering.
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Intro

Preference Learning Motivation

@ Job candidates or prospective graduate students
@ Conference papers or science fair projects

@ Sports teams

@ Websites as related to a particular search

@ Products that an industry would like you to buy

@ Anomalies that need to be investigated (in a computer
network, in a medical situation)
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Intro

Preference Learning Challenges

@ Noisy k-wise comparisons

o Limited feedback (k is small, say 2, not all pairs are
compared, or only click data is available)

e Often the comparisons have intransitivity (even from a
single user)
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Intro

Preference Learning — Intransitivity

. . . e |
Problem that is usually ignored: intransitivity. 1
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Intro

Preference Learning — Intransitivity

1 N

i <
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Problem that is usually ignored: intransitivity.

But this is a prevalent characteristic of preference data.

Data Set Valid Triplets Strong Violations Moderate Violations Weak Violations
NBA 2654 1439 (54%) 1185 (45%) 272 (10%)
Tennis 4793 1002 (23%) 1080 (23%) 651 (14%)
Nascar 65003 26354 (41%) 17128 (26%) 4171 (6%)
Jester 161700 14560 (9%) 327 (2%) 78 (.05%)
Sushi-A 120 28 (23%) 0 (0%) 0 (0%)
Sushi-B 139992 66013 (47%) 26366 (19%) 4939 (4%)
District 48 25 (52%) 8 (16%) 0 (0%)
Car 120 46 (38%) 7 (6%) 0 (0%)
Sonancia 874 175 (20%) 175 (20%) 108 (13%)
New Yorker Captions 3990 1823 (51%) 606 (17%) 199 (6%)
Table:
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Intro

Salient Features Motivation

Image source: http://vision.cs.utexas.edu/projects/finegrained/utzap50k/
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Intro

Salient Features Motivation: Which is more comfortable?

Pair #1

Image source: http://vision.cs.utexas.edu/projects/finegrained/utzap50k/
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Intro

Salient Features Motivation: Which is more comfortable?
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Pair #2 —
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Violation of Rational Choice - Related Work

@ Several social science papers have commented on the “salient
feature” phenomenon
[Bordalo et al., 2013, Rieskamp et al., 2006,
Brown and Peterson, 2009, Tversky, 1972].

@ [Seshadri et al., 2019, Chen and Joachims, 2016] model item
utilities as context-dependent by learning features of the
items, whereas
[Rosenfeld et al., 2019, Pfannschmidt et al., 2019] learn item
utilities as context-dependent with neural networks assuming
known features.

e [Niranjan and Rajkumar, 2017, Kleinberg et al., 2017,
Ragain and Ugander, 2016, Benson et al., 2016,
Rajkumar et al., 2015, Yang and Wakin, 2015] ...
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Intro

Our Contributions

@ Our model:

e is a convex preference model of intransitivity where different
comparisons use different features
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Our Contributions

@ Our model:
e is a convex preference model of intransitivity where different
comparisons use different features,
e is inspired by social choice theory
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Intro

Our Contributions

@ Our model:

e is a convex preference model of intransitivity where different
comparisons use different features,

e is inspired by social choice theory,

e makes a direct connection between intransitive preferences and
a ranking of all the items
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Intro

Our Contributions

@ Our model:

e is a convex preference model of intransitivity where different
comparisons use different features,

e is inspired by social choice theory,

e makes a direct connection between intransitive preferences and
a ranking of all the items, and

e has sample complexity guarantees.
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Model Preliminaries

n items, each with a known feature vector U; € RY.
U [U1U2 Un] € Ran.
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Model Preliminaries

e n items, each with a known feature vector U; € RY.
U:= [U1U2 s Un] € Rdxn.

@ We assume a universal ranking, and w* € R are unknown
Jjudgment weights, which signify the importance of each
feature for the universal ranking.
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Model Preliminaries

e n items, each with a known feature vector U; € RY.
U:= [U1U2 s Un] € Ran.

@ We assume a universal ranking, and w* € R are unknown
Jjudgment weights, which signify the importance of each
feature for the universal ranking.

o P:={(i,j) €[n] x[n] :i<j} is the set of all pairs.
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Model Preliminaries

e n items, each with a known feature vector U; € RY.
U:= [U1U2 s Un] € Rdxn.

@ We assume a universal ranking, and w* € R are unknown
Jjudgment weights, which signify the importance of each
feature for the universal ranking.

o P:={(i,j) €[n] x[n] :i<j} is the set of all pairs.
© S = {(ir, jo; ye)}j., are m independent pairwise comparisons,

where a pair (ig, j¢) € P has outcome yy € {0,1} (1 means i
beats ji).
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Salient Feature Preference Model

e 7 : [n] x [n] — Powerset([d]) is the known selection function
that determines which features are used in each pairwise
comparison.

(e T (S 80)

Ug Ues Us:

Image source: http://vision.cs.utexas.edu/projects/finegrained/utzap50k/
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Salient Feature Preference Model

e 7 : [n] x [n] — Powerset([d]) is the known selection function
that determines which features are used in each pairwise
comparison.

e y; ~ Bern(P(iy >pg js)) where i >g j means ‘i beats j' and

exp (<U’_T(U)’ W*>)

exp ((UJ?'(",J')7 W*>) T exp (<U’7-(,',j)7 W*)) - (1)

P(i >p j) =
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Salient Feature Preference Model

e 7 : [n] x [n] — Powerset([d]) is the known selection function
that determines which features are used in each pairwise
comparison.

e y; ~ Bern(P(iy >pg js)) where i >g j means ‘i beats j' and

exp (<U’_T(U)’ W*>)

exp ((UJ?'(",J')7 W*>) T exp (<U;-(i’j)7 W*)) - (1)

P(i >p j) =

@ The utility of the item is dependent on the context of that
particular comparison.
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Salient Feature Preference Model

e 7 : [n] x [n] — Powerset([d]) is the known selection function
that determines which features are used in each pairwise
comparison.

e y; ~ Bern(P(iy >pg js)) where i >g j means ‘i beats j' and

exp (<U’_T(U)’ W*>)

exp ((UJ?'(",J')7 W*>) T exp (<U;-(i’j)7 W*)) - (1)

P(i >p j) =

@ The utility of the item is dependent on the context of that
particular comparison.

@ The items are ranked by sorting the full feature utilities:
(Ui, w*). FBTL is a special case where 7 = [d].
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Salient Features

Bradley-Terry-Luce with features (FBTL)
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Model

Salient Features

Bradley-Terry-Luce with features (FBTL)
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Model

Salient Features

Bradley-Terry-Luce with salient features
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Model

Salient Features

Bradley-Terry-Luce with salient features

4 feature y .—4_ feature y
1 1
v w* F—=0 v w*
@3—
T . .

‘5 feature x feature x

If the pair 4,2 uses only feature y, 4 > 2. If pair 2,5 uses only
feature x, 2 > 5. But if 4,5 uses feature x or both features, then
5 > 4, giving us intransitivity.
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Maximum Likelihood Estimation

Given observations Sp, = {(ir, jo, y¢) } 7.1, item features U € R9*",
and a selection function 7, the negative log-likelihood of w € R is

Lm(w; U, Sm,7) = Z log (1 + exp (ufz,je)) — Yelipjgs (2)
(=1

7 (i Ji 7 (i Ji
where uj, j, = <W, Ui[(“e) — Ujl(“é)>.
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Sample Complexity

Sample Complexity of MLE - Preliminaries

o Let

b* = >s<7 UT(’aJ) . UT(’J) ,
(;ngxPKW j N

i.e. the maximum absolute difference between a pair of
context dependent utilities
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Sample Complexity

Sample Complexity of MLE - Preliminaries

o Let N N
b* := max [(w* urtd) U-T("/)H
Gpep ! /
i.e. the maximum absolute difference between a pair of
context dependent utilities

e For (i,j) € P, let

)

Zigy = (U7 = gfh o - g7

A= )\min(EZ(iJ))v

where expectation is taken with respect to a uniformly chosen
random pair of items from P.
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Sample Complexity

Sample Complexity of MLE - Preliminaries

o Let N N
b* := max [(w", U,-T("J) — U-T("/)>\7
(ij)eP J
i.e. the maximum absolute difference between a pair of
context dependent utilities
e For (i,j) € P, let
e (U’T(”J) _ UJ_T(/J))(UI_T(I,J) _ UJ_T('aJ))T
A= )\min(EZ(iJ))v

Z

where expectation is taken with respect to a uniformly chosen
random pair of items from P.
o Let

5= max U7 - 070, @
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Sample Complexity

Sample Complexity of MLE - Theorem

Let w be the maximum likelihood estimator. Let & > 0. If X >0
and

) 2 e {c1(52d + 5Vd) log(4d /), Czk’g(id/é)} ,

then with probability at least 1 — ¢,

Jw* — o = 0 [ =) \/ (82 + 5/d) og(4d))
A

m

where C1, C, are constants, probability is w.r.t both the random
pairs and random outcomes of pairwise comparisons.
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Sample Complexity

Sample Complexity of MLE - Discussion

Theorem 1

Let > 0. If \ >0 and

m > max {C1(52d + BV d) log(4d/9), ng} , then with
probability at least 1 — 6,

" — s = 0 | 220 \/ (82 + 5Vd) log(44))
A m

e With roughly constant 3, A, b*, we need Q(d log(d/J))
measurements for the error to be O(1).
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Sample Complexity

Sample Complexity of MLE - Discussion

Theorem 1

Let > 0. If \ >0 and

m > max {C1(52d + BV d) log(4d/9), ng} , then with
probability at least 1 — 6,

" — s = 0 | 220 \/ (824 + 5/d) log(44)
A

m

e With roughly constant 3, A, b*, we need Q(d log(d/J))
measurements for the error to be O(1).

e Corollaries: (1) 7 selects all features, (2) 7 selects one feature
per pair, and (3) learning the ranking
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Empirical Results

Congressional Districts in the United States
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Image source: https://projects.fivethirtyeight.com/redistricting-maps/michigan/
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Empirical Results

Intrasitivity

Pair #1
Pair #2
Pair #3

Pair #4
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Pair #5

Image source: [Kaufman et al., 2017]
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Empirical Results

2

() (b) ()

Intrasitivity

) a is more compact than b 70%
_* b is more compact than ¢ 90%

a is more compact than ¢ 60%

This breaks moderate stochastic
transitivity, because

Pair #5
P(a> ¢) <min(P(a> b), P(b> ¢)) .

Image source: [Kaufman et al., 2017]
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Empirical Results

Intrasitivity

Pair #1 ‘7 ol
Pair #2 * ."
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Pair #4

k-wise rankings
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Image source: [Kaufman et al., 2017]
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Empirical Results

Intrasitivity
A pairwise “approach enables
W" - respondents to make each paired
Pair #1 comparison independently of the
_ -* j others allows, and may even
Pair #2 encourage, them to use
_ ) '* different dimensions for
Pair #3 different comparisons”
Pair 44 . - [Kaufman et al., 2017].
Pair #5 1 -H
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Empirical Results

Intrasitivity

A pairwise “approach enables
respondents to make each paired
comparison independently of the
others allows, and may even
encourage, them to use
different dimensions for
different comparisons”
[Kaufman et al., 2017].

Pair #1

Pair #3

Pair #4

";’,
Pair #2 ¥
2
L
2

"+ h

Instead of abandoning pairwise
comparisons, we model this
behavior.

Pair #5
Image source: [Kaufman et al., 2017]
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Empirical Results

Experimental results

Table: Average Kendall tau correlation over individual rankings on test
sets for district compactness. The number in parenthesis is the standard
deviation.

Model: Shiny1 Shiny2 UG1-j1 UG1-j2 UG1-33 UGL-j4 UG1-j5

Salient features 0.14 (.26) 0.26 (.2) 0.48 (.21) 0.41 (.09) 0.6 (.1) 0.14 (.14) 0.42 (.09)
FBTL 0.00 (22) 018 (17) 0.2 (.12) 0.26 (.07) 045 (.15) 0.2 (.13) 0.06 (.14)
Ranking SVM 0.00 (22) 018 (17) 022(12) 026 (.07) 045 (15) 0.2 (.13) 0.06 (.14)
RankNet 0.12(24) 024(18) 028 (14) 037 (.08) 053 (11) 0.28 (08)  0.15 (.15)
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Future Work

Future Work

@ Learn the selection function or features.

@ Apply and extend the salient feature framework to other
scenarios that involve human comparisons.

@ Understand the impact of intransitivity in preference data on
the sample complexity.
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Additional Intransitivity Table

Data Set Items Match-ups Unique Pairs Valid Triplets
NBA 2015 30 1238 430 (99%) 2654 (65%)
Tennis 2014 288 2560 1080 (23%) 651 (14%)
Nascar [Guiver and Snelson, 2009] 83 64596 2875 (84%) 65003 (71%)
Jester 100 145354552 4950 (100%) 161700 (100%)
Sushi-A [Kamishima and Akaho, 2009] 10 225000 45 (100%) 120 (100%)
Sushi-B [Kamishima and Akaho, 2009] 100 225000 4809 (97%) 139992 (86%)
District [Kaufman et al., 2017] 122 5150 94 (1%) 48 (.02%)
Car [Abbasnejad et al., 2013] 10 2973 45 (100%) 120 (100%)
Sonancia [Lopes et al., 2017] 874 671 175 (20%) 108 (13%)
New Yorker Captions—508 29 31043 406 (100%) 3592 (98%)

Table: Match-ups is the number of pairwise comparison samples. Valid
triplets are triplets of items (/, j, k) where data has been collected on i vs
JjrJjvs k, and k vs i. Back to

NBA: https://www.kaggle.com/ionaskel/nba-games-stats-from-2014-to-2018 Tennis:
https://www.kaggle.com/jordangoblet/atp-tour-20002016 Nascar:
http://personal.psu.edu/drh20/code/btmatlab/ Jester: http://eigentaste.berkeley.edu/dataset/ Sushi:
http://www.kamishima.net/sushi/ Car: http://users.cecs.anu.edu.au/~u4940058/CarPreferences.html
Sonancia: http://plt.institutedigitalgames.com/datasets.php New Yorker: https://github.com/nextml/
caption-contest-data/blob/master/contests/responses/508-round2-dueling-responses.csv.zip
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Stochastic Transitivity Definitions

Let P; =P(i >gj) and T = {(i,j, k) € [n]®: P; > .5, Py > .5}.
Then (i,j, k) € T satisfies strong stochastic transitivity if

Pix > max{Pj;, Pjc}, moderate stochastic transitivity if

Pi > min{Pj;, Py}, and weak stochastic transitivity if Py > .5
Back to
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