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Wasserstein Distance: a natural geometry for distributions

How does one compute the distance between

two data distributions?

• Relative entropy and other f-divergences

allow classical statistical approaches.

• Optimal transport theory allows us to

capture the geometry of the data

distributions, with the Wasserstein distance.
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Wasserstein distance in machine learning

Wasserstein GAN (Arjovsky et al., 2017)

Wasserstein Discriminant Analysis (Flamary et al., 2018)

Clustered point-matching (Alvarez-Melis et al., 2018)
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Wasserstein distance in machine learning

Diffeomorphic registration (Feydy et al., 2017)

Alignment of embeddings (Grave et al., 2019)

Sinkhorn divergence for

generative models (Genevay et

al., 2019)
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Our contribution

We consider the minimum Kantorovich estimator

(Bassetti et al., 2006), or Wasserstein estimator of the

measure µ:

min
νPM

OTpµ, νq ,

which is often used for µ “
ř

i δxi to fit a parametric

model M (as with MLE, where KL divergence replaces

OT).

µ

ν

M

OTpµ, νq
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Our contribution

• We add two layers of entropic regularization.

• We propose a new stochastic optimization scheme

to minimize the regularized problem.

• Time per step is sublinear in the natural dimension

of the problem.

• We provide theoretical guarantees, and simulations.
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Regularized Wasserstein Distance

Wasserstein distance

Wcpµ, νq “ OTpµ, νq “ min
πPΠpµ,νq

EpX ,Y q„π rcpX ,Y qs

Regularized Wasserstein distance

OTεpµ, νq “ min
πPΠpµ,νq

EpX ,Y q„π rcpX ,Y qs`εKLpπ, µb νq

Computed at lightspeed by Sinkhorn algorithm (Cuturi 2013)

SGD on dual problem (Genevay et al. 2016)
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Regularized Wasserstein Estimator

Wasserstein estimator

min
νPM

OTpµ, νq

First layer of regularization

min
νPM

OTεpµ, νq

Second layer of regularization

min
νPM

OTεpµ, νq`η KLpν, βq
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First layer: Gaussian deconvolution

This is a recent interpretation (Rigollet, Weed 2018).

Let Xi be iid random variables following ν˚, Zi „ ϕε “ N p0, εIdq an iid gaussian

noise and Yi “ Xi ` Zi the perturbed observation with distribution µ.

Xi „ ν˚

Ñ
Yi „ ϕε ˚ ν

˚

Xi ` Zi
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First layer: Gaussian deconvolution

For cpx , yq “ }x ´ y}2, the MLE for ν˚ is

ν̂ :“ arg max
νPM

ÿ

i

logpϕε ˚ νqpXiq ô ν̂ “ arg min
νPM

OTεpµ, νq.

Xi „ ν˚

Ð
Yi „ ϕε ˚ ν

˚

Xi ` Zi
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First layer: adds entropy to the transport matrix

Figure 1: Small regularization ε “ 0.01 Figure 2: Big regularization ε “ 0.1
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Second Layer: Interpolation with likelihood estimators

Wasserstein Estimator

min
νPM

OTpµ, νq

Maximum Likelihood Estimator

min
νPM

KLpν, βq

Regularized Wasserstein Estimator

min
νPM

OTεpµ, νq`η KLpν, βq

10



Second Layer: adds entropy to the target measure

Figure 3: Small regularization η “ 0.02 Figure 4: Big regularization η “ 0.2
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Dual Formulation of the problem

min
νPM

OTεpµ, νq`η KLpν, βq

with

OTεpµ, νq “ min
πPΠpµ,νq

EpX ,Y q„π rcpX ,Y qs`εKLpπ, µb νq

is

min
νPM

min
πPΠpµ,νq

EpX ,Y q„π rcpX ,Y qs`εKLpπ, µb νq`η KLpν, βq.

We consider the dual of the second min.
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Dual Formulation

The dual problem can be written as a saddle

point problem, where the min and the max can

be swapped. The final formulation is of the form

max
pa,bqPRIˆRJ

F pa, bq.
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Properties of the function F in the discrete case

1. F is λ-strongly convex on the hyperplane E “ t
ř

i µiai “
ř

j βjbju.

2. There exists a solution of max
pa,bqPRIˆRJ

F pa, bq, which is in E , and it is unique.

3. The gradients of F can be written as expectations

∇aF “ E rp1´ Di ,jqei s ,

∇bF “ E rpfj ´ Di ,jqej s .

with Di ,jpa, bq “ exp
´

ai`bj´Ci,j

ε

¯

and fj “
νj pbq

βj
.
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Stochastic Gradient Descent

We have stochastic gradients for F

Ga “ p1´ Di ,jqei

Gb “ pfj ´ Di ,jqej .

SGD algorithm:

• Sample i P t1, . . . , I u with probability µi ,

• Sample j P t1, . . . , Ju with probability βj ,

• Compute Ga and Gb

• aÐ a ` γtGa,

• b Ð b ` γtGb.
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Stochastic Gradient Descent

We only have to compute a and b one coefficient at a time

• Sample i P t1, . . . , I u with probability µi ,

• Sample j P t1, . . . , Ju with probability βj ,

• Compute fj and Di ,j

• ai Ð ai ` γtp1´ Di ,jq,

• bj Ð bj ` γtpfj ´ Di ,jq.
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The sum memorization trick

The computation of Di ,jpa, bq “ exp
´

ai`bj´Ci,j

ε

¯

and fj “
νj pbq

βj
is Op1q.

However

ν˚j “
βje

´bj {pη´εq

ř

k βke
´bk{pη´εq

,

but we can do it in Op1q if we update

S ptq “
ÿ

k

βke
´b

ptq
k {pη´εq,

with

S pt`1q
“ S ptq ` βje

´b
pt`1q
j {pη´εq

´ βje
´b

ptq
j {pη´εq.
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Convergence Bounds

With stepsize γt “
1
λt

, the estimator verifies

E rKLpν˚, νtqs ď
C1

pη ´ εqλ2

1` log t

t
.

With stepsize γt “
C2?
t
, the estimator verifies the following bound:

E rKLpν˚, νtqs ď
C3

pη ´ εqλ

2` log t
?
t

.
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Simulations

Figure 5: Convergence of the gradient norm for different dimensions.
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Using for Wasserstein Barycenters

Wasserstein barycenter

min
ν

K
ÿ

k“1

θk OTpµk , νq.

Doubly regularized Wasserstein barycenter

min
ν

K
ÿ

k“1

θk OTεpµ
k , νq ` η KLpν, βq.
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Conclusion

Takeaways:

• Wasserstein estimators are ”projections” according to Wasserstein distances,

• Two layers of entropic regularization are used here,

• It is then possible to compute stochastic gradients in Op1q for this problem,

• The results are also valid for Wasserstein barycenters.

Thank you for your attention!
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