Stochastic Optimization for
Regularized Wasserstein Estimators

ICML 2020

Marin Ballu Quentin Berthet Francis Bach

& UNIVERSITY OF 4 2
¥ CAMBRIDGE Google brezia—

IDE NUMERIQUE




Wasserstein Distance: a natural geometry for distributions

How does one compute the distance between
two data distributions?




Wasserstein Distance: a natural geometry for distributions

How does one compute the distance between
two data distributions?
e Relative entropy and other f-divergences
allow classical statistical approaches.




Wasserstein Distance: a natural geometry for distributions

How does one compute the distance between

/\ /\ N | two data distributions?

e Relative entropy and other f-divergences
allow classical statistical approaches.

e Optimal transport theory allows us to
capture the geometry of the data

/& ,\ distributions, with the Wasserstein distance.

We(p,v) = OT(p,v) = min Ex., [c(X, T(X))]

Typ=v



Wasserstein Distance: a natural geometry for distributions

How does one compute the distance between

/\ /\ N | two data distributions?

e Relative entropy and other f-divergences
allow classical statistical approaches.

e Optimal transport theory allows us to

capture the geometry of the data
/& k distributions, with the Wasserstein distance.

We(p,v) = OT (1, v) = min E(x y)ur [c(X, Y)]

mel(p,v)



Wasserstein distance in machine learning
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Wasserstein GAN (Arjovsky et al., 2017)
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Wasserstein Discriminant Analysis (Flamary et al., 2018)

Source EMD Submod OT

Target Entropy-regularized
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Clustered point-matching (Alvarez-Melis et al., 2018)
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Sinkhorn divergence for
al., 2019)
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generative models (Genevay et
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Diffeomorphic registration (Feydy et al., 2017)
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Alignment of embeddings (Grave et al., 2019)



Our contribution

1

OT(u,v)

We consider the minimum Kantorovich estimator
(Bassetti et al., 2006), or Wasserstein estimator of the
measure /i

min OT(p,v),

which is often used for i = > .. d,, to fit a parametric
model M (as with MLE, where KL divergence replaces M
OoT).



Our contribution

1
OT(u,v)

e We add two layers of entropic regularization.
e \We propose a new stochastic optimization scheme

to minimize the regularized problem.

: . . : : . v

e Time per step is sublinear in the natural dimension

of the problem. M

We provide theoretical guarantees, and simulations.
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Regularized Wasserstein distance
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mel(p,v)

Computed at lightspeed by Sinkhorn algorithm (Cuturi 2013)
SGD on dual problem (Genevay et al. 2016)



Regularized Wasserstein Estimator

Woasserstein estimator
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Regularized Wasserstein Estimator

Woasserstein estimator
min OT (u, v
min OT (u, v)
First layer of regularization
min OT v
min OT. (i, v)

Second layer of regularization

min OT_ (1, ) +71 KL(v, 6)




First layer: Gaussian deconvolution

This is a recent interpretation (Rigollet, Weed 2018).

Let X; be iid random variables following v*, Z; ~ ¢. = N(0,¢ld) an iid gaussian
noise and Y; = X; + Z; the perturbed observation with distribution .
LA X+ Z,
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First layer: Gaussian deconvolution

2 the MLE for v* is

For c(x,y) = |x -y
D= arg m%Z log(p. = v)(X;) < U = arg mj\r/]l OT.(u,v).
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First layer: adds entropy to the transport matrix
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Figure 1: Small regularization ¢ = 0.01 Figure 2: Big regularization ¢ = 0.1



Second Layer: Interpolation with likelihood estimators

Woasserstein Estimator Maximum Likelihood Estimator

min OT (1, v) min KL (v, )

Regularized Wasserstein Estimator

min OT. (i, v)+1 KL(v, )
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Second Layer: adds entropy to the target measure
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Figure 3: Small regularization n = 0.02 Figure 4: Big regularization n = 0.2
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Dual Formulation of the problem

min OT. (i, v)+n KL(v, )

with
OT.(1,v) = min E(x y)r [c(X,Y)]
wel(p,v)
is
min - min Ex vy [c(X,Y)] +nKL(v, B).

veM mel(u,v)

We consider the dual of the second min.
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Dual Formulation

The dual problem can be written as a saddle
point problem, where the min and the max can
be swapped. The final formulation is of the form

max F(a,b).

(a,b)eR! xR/
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Properties of the function F in the discrete case

1. F is A-strongly convex on the hyperplane E = {}; pia; = 3.; B;b;}.

2. There exists a solution of

(a,b)eR! xR/

max  F(a,

b), | which is in E, and it is unique.

3. The gradients of F can be written as expectations

V.F =E[(1-
VoF =E[(f —

J

with D; j(a, b) = exp (%) and f; =

D;;)ei] ,
Di;)ei] -

vj(b)
Bi -
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Stochastic Gradient Descent

We have stochastic gradients for F

SGD algorithm:

Sample i € {1,...,/} with probability x;,
Sample j € {1,..., J} with probability j;,
Compute G, and G,

a<— a+ 1:G,,
b — b"”}/th
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Stochastic Gradient Descent

We only have to compute a and b one coefficient at a time

e Sample j € {1,...,/} with probability 1;,
e Sample j € {1,...,J} with probability /;,
e Compute f; and D;;

e 3, — a; +7:(1— D),

o bj — bj+(fi — Diy).
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The sum memorization trick

The computation of D; j(a, b) = exp (%) and f; = Vj@ is O(1).

However
/6 e~ 1/(77 5
I/*

J _Zkﬁke by/(n—e)’

but we can do it in O(1) if we update

st _ Zﬂkefb‘k“/(nfs)’
k

with
S+l _ gt 4 ﬁje—bf‘“/w—a) _ 5je—bf“/(n—€)'

17



Convergence Bounds

With stepsize v; = <, the estimator verifies

1
At

G 1+ logt
E [KL(v*,v")] < .
[ (V ,V)] (77—5))\2 t

ey

With stepsize 7; = =2, the estimator verifies the following bound:

<

C3 2—|—|Ogt

E[KL(v*, v")] < —n Vi
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Simulations
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Figure 5: Convergence of the gradient norm for different dimensions.
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Using for Wasserstein Barycenters

Wasserstein barycenter

K
min Z 0, OT (1, v).

k=1

Doubly regularized Wasserstein barycenter

K
min > 60, OT. (1%, v) + nKL(, B).
k=1
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Conclusion

Takeaways:

e \Wasserstein estimators are " projections” according to Wasserstein distances,
e Two layers of entropic regularization are used here,
e It is then possible to compute stochastic gradients in O(1) for this problem,

e The results are also valid for Wasserstein barycenters.

Thank you for your attention!
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