On the Iteration Complexity of Hypergradient Computation

Riccardo Grazzi

Computational Statistics and Machine Learning, Istituto Italiano di Tecnologia. Department of Computer Science, University College London.

riccardo.grazzi@iit.it

Joint work with Luca Franceschi, Massimiliano Pontil and Saverio Salzo.

Bilevel Optimization Problem

$$\min_{\lambda \in \Lambda \subseteq \mathbb{R}^n} f(\lambda) := E(w(\lambda), \lambda) \quad \text{(upper-level)}$$

$$w(\lambda) := \Phi(w(\lambda), \lambda) \quad \text{(lower-level)}$$

- · Hyperparameter optimization, meta-learning.
- Graph and recurrent neural networks.

How can we solve this optimization problem?

· Black-box methods (random/grid search, Bayesian optimization, ...).

Bilevel Optimization Problem

$$\min_{\lambda\in\Lambda\subseteq\mathbb{R}^n}f(\lambda):=E(w(\lambda),\lambda)\quad\text{(upper-level)}$$

$$w(\lambda):=\Phi(w(\lambda),\lambda)\quad\text{(lower-level)}$$

- · Hyperparameter optimization, meta-learning.
- Graph and recurrent neural networks.

How can we solve this optimization problem?

- · Black-box methods (random/grid search, Bayesian optimization, ...).
- Gradient-based methods exploiting the hypergradient $\nabla f(\lambda)$.

Computing the Hypergradient $\nabla f(\lambda)$

Can be really expensive or even impossible to compute Exactly.

Two common approximation strategies are

- 1. Iterative Differentiation (ITD).
- 2. Approximate Implicit Differentiation (AID).

Computing the Hypergradient $\nabla f(\lambda)$

Can be really expensive or even impossible to compute Exactly.

Two common approximation strategies are

- 1. Iterative Differentiation (ITD).
- 2. Approximate Implicit Differentiation (AID).

Which one is the best?

Previous works provide mostly qualitative and empirical results.

Can we have quantitative results on the approximation error?

• Yes! If the fixed point map $\Phi(\cdot, \lambda)$ is a **contraction**.

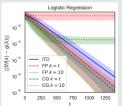
Our Contributions

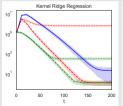
Upper bounds on the approximation error for both ITD and AID

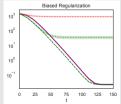
- Both methods achieve non-asymptotic linear convergence rates.
- We prove that ITD is generally worse than AID in terms of upper bounds.

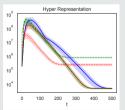
Extensive experimental comparison among different AID strategies and ITD

- If $\Phi(\cdot, \lambda)$ is a contraction, the results confirm the theory.
- If $\Phi(\cdot, \lambda)$ is NOT a contraction, ITD can be still a reliable strategy.

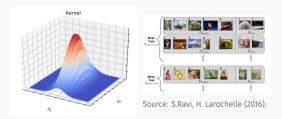






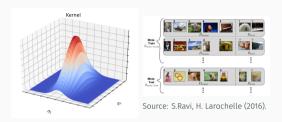


Motivation

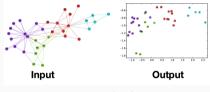


- Hyperparameter optimization (learn the kernel/regularization, ...).
- · Meta-learning (MAML, L2LOpt, ...).

Motivation



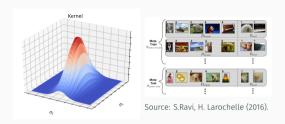
- Hyperparameter optimization (learn the kernel/regularization, ...).
- Meta-learning (MAML, L2LOpt, ...).



Source: snap.stanford.edu/proj/embeddings-www

- · Graph Neural Networks.
- · Some Recurrent Models.
- · Deep Equilibrium Models.

Motivation



Input Output Source: snap.stanford.edu/proj/embeddings-www

- Hyperparameter optimization (learn the kernel/regularization. ...).
- · Meta-learning (MAML, L2LOpt, ...).

- · Graph Neural Networks.
- Some Recurrent Models.
- Deep Equilibrium Models.

All can be cast into the same bilevel framework where at the lower-level we seek for the solution to a parametric fixed point equation.

Example: Optimizing the Regularization Hyperparameter in Ridge Regression

$$\begin{split} \min_{\lambda \in (0,\infty)} \frac{1}{2} \|X_{\mathrm{val}} w(\lambda) - y_{\mathrm{val}}\|_2^2 \\ w(\lambda) &= \operatorname*{arg\,min}_{w \in \mathbb{R}^d} \left\{ \ell(w,\lambda) := \frac{1}{2} \|Xw - y\|_2^2 + \frac{\lambda}{2} \|w\|_2^2 \right\} \end{split}$$

 $w(\lambda)$ is the **unique fixed point** of the *one step GD* map

$$\Phi(w,\lambda) = w - \alpha \nabla_1 \ell(w,\lambda)$$

If the step size α is sufficiently small, $\Phi(\cdot, \lambda)$ is also a **contraction**.

The Bilevel Framework

$$\min_{\lambda\in\Lambda\subseteq\mathbb{R}^n}f(\lambda):=E(w(\lambda),\lambda)\quad\text{(upper-level)}$$

$$w(\lambda):=\Phi(w(\lambda),\lambda)\quad\text{(lower-level)}$$

- $w(\lambda) \in \mathbb{R}^d$ is often not available in closed form.
- \cdot f is usually non convex and **expensive** or **impossible** to evaluate exactly.

The Bilevel Framework

$$\min_{\lambda\in\Lambda\subseteq\mathbb{R}^n}f(\lambda):=E(w(\lambda),\lambda)\quad\text{(upper-level)}$$

$$w(\lambda):=\Phi(w(\lambda),\lambda)\quad\text{(lower-level)}$$

- $w(\lambda) \in \mathbb{R}^d$ is often not available in closed form.
- \cdot f is usually non convex and **expensive** or **impossible** to evaluate exactly.
- ∇f is even harder to evaluate.

How to Compute the Hypergradient $\nabla f(\lambda)$?

Iterative Differentiaton (ITD)

1. Set $w_0(\lambda)=0$ and compute,

$$\label{eq:definition} \begin{aligned} &\text{for } i=1,2,\ldots t \\ & \left[\begin{array}{c} w_i(\lambda) = \Phi(w_{i-1}(\lambda),\lambda). \end{array} \right. \end{aligned}$$

- 2. Compute $f_t(\lambda) = E(w_t(\lambda), \lambda)$.
- 3. Compute $\nabla f_t(\lambda)$ efficiently using reverse (RMAD) or forward (FMAD) mode automatic differentiation.

How to Compute the Hypergradient $\nabla f(\lambda)$?

Iterative Differentiaton (ITD)

1. Set $w_0(\lambda) = 0$ and compute,

$$\begin{split} &\text{for } i=1,2,\ldots t\\ & \Big| \ w_i(\lambda) = \Phi(w_{i-1}(\lambda),\lambda). \end{split}$$

- 2. Compute $f_t(\lambda) = E(w_t(\lambda), \lambda)$.
- 3. Compute $\nabla f_t(\lambda)$ efficiently using reverse (RMAD) or forward (FMAD) mode automatic differentiation.

Approximate Implicit Differentiation (AID)

- 1. Get $w_t(\lambda)$ with t steps of a lower-level solver.
- 2. Compute $v_{t,k}(\lambda)$ with k steps of a solver for the linear system

$$(I - \partial_1 \Phi(\boldsymbol{w}_t(\lambda), \lambda)^\top) \boldsymbol{v} = \nabla_1 E(\boldsymbol{w}_t(\lambda), \lambda).$$

3. Compute the approximate gradient as

$$\begin{split} \hat{\nabla} f(\lambda) \coloneqq & \nabla_2 E(w_t(\lambda), \lambda) \\ & + \partial_2 \Phi(w_t(\lambda), \lambda)^\top v_{t,k}(\lambda). \end{split}$$

How to Compute the Hypergradient $\nabla f(\lambda)$?

Iterative Differentiaton (ITD)

1. Set $w_0(\lambda) = 0$ and compute,

$$\begin{split} &\text{for } i=1,2,\ldots t \\ & \Big| \ w_i(\lambda) = \Phi(w_{i-1}(\lambda),\lambda). \end{split}$$

- 2. Compute $f_t(\lambda) = E(w_t(\lambda), \lambda)$.
- 3. Compute $\nabla f_t(\lambda)$ efficiently using reverse (RMAD) or forward (FMAD) mode automatic differentiation.

Approximate Implicit Differentiation (AID)

- 1. Get $w_t(\lambda)$ with t steps of a lower-level solver.
- 2. Compute $v_{t,k}(\lambda)$ with k steps of a solver for the linear system

$$(I - \partial_1 \Phi(\boldsymbol{w}_t(\lambda), \lambda)^\top) \boldsymbol{v} = \nabla_1 E(\boldsymbol{w}_t(\lambda), \lambda).$$

3. Compute the approximate gradient as

$$\begin{split} \hat{\nabla} f(\lambda) \coloneqq & \nabla_2 E(w_t(\lambda), \lambda) \\ & + \partial_2 \Phi(w_t(\lambda), \lambda)^\top v_{t,k}(\lambda). \end{split}$$

Which one is the best?

A First Comparison

ITD

- Ignores the bilevel structure.
- Cost in time (RMAD): $O(\operatorname{Cost}(f_t(\lambda)))$
- Cost in memory (RMAD): O(td).
- · Can we control $\|\nabla f_t(\lambda) \nabla f(\lambda)\|$?

AID

- · Can use any lower-level solver.
- Cost in time (k = t): $O(\text{Cost}(f_t(\lambda)))$.
- Cost in memory: O(d).
- · Can we control $\|\hat{\nabla}f(\lambda) \nabla f(\lambda)\|$?

 $f_t(\lambda) = E(w_t(\lambda), \lambda).$

Previous Work on the Approximation Error

ITD

• $\arg \min f_t \xrightarrow[t \to \infty]{} \arg \min f$ (Franceschi et al., 2018).

AID

- $\cdot \ \| \hat{\nabla} f(\lambda) \nabla f(\lambda) \| \xrightarrow[t,k \to \infty]{} 0$ (Pedregosa, 2016).
- $\cdot \ \| \hat{\nabla} f(\lambda) \nabla f(\lambda) \| \xrightarrow[t,k \to \infty]{} 0 \text{ at a}$ linear rate in t and k for meta-learning with biased regularization (Rajeswaran et al., 2019).

 $f_t(\lambda) = E(w_t(\lambda), \lambda).$

Previous Work on the Approximation Error

ITD

- $\arg \min f_t \xrightarrow[t \to \infty]{} \arg \min f$ (Franceschi et al., 2018).
- We provide non-asymptotic upper bounds on $\|\nabla f_t(\lambda) \nabla f(\lambda)\|$.

AID

- $\cdot \ \| \hat{\nabla} f(\lambda) \nabla f(\lambda) \| \xrightarrow[t,k \to \infty]{} 0$ (Pedregosa, 2016).
- $\cdot \ \| \hat{\nabla} f(\lambda) \nabla f(\lambda) \| \xrightarrow[t,k \to \infty]{} 0 \text{ at a}$ linear rate in t and k for meta-learning with biased regularization (Rajeswaran et al., 2019).
- We provide non-asymptotic upper bounds on $\|\hat{\nabla}f(\lambda) \nabla f(\lambda)\|$.

 $f_t(\lambda) = E(w_t(\lambda), \lambda).$

Preliminaries

Assumptions

- $\Phi(\cdot, \lambda)$ is a **contraction** with constant $q_{\lambda} < 1$.
- \cdot $\partial_1\Phi(\cdot,\lambda)$, $\partial_2\Phi(\cdot,\lambda)$, $\nabla_1E(\cdot,\lambda)$ and $\nabla_2E(\cdot,\lambda)$ are Lipschitz continuous

 $\implies f$ differentiable and

$$\begin{split} w'(\lambda) &:= (I - \partial_1 \Phi(w(\lambda), \lambda))^{-1} \partial_2 \Phi(w(\lambda), \lambda) \\ \nabla f(\lambda) &= \nabla_2 E(w(\lambda), \lambda) + w'(\lambda)^\top \nabla_1 E(w(\lambda), \lambda). \end{split}$$

Main Contribution

Theorem (ITD error upper bound)

$$\|\nabla f_t(\lambda) - \nabla f(\lambda)\| \le \Big(c_1(\lambda) + \frac{c_2(\lambda)}{q_\lambda}t + c_3(\lambda)\Big)q_\lambda^t,$$

Theorem (AID error upper bound)

Let $v_t(\lambda):=(I-\partial_1\Phi(w_t(\lambda),\lambda)^\top)^{-1}\nabla_1E(w_t(\lambda),\lambda)$ and assume that

- $\cdot \ \|w_t(\lambda) w(\lambda)\| \leq \rho_{\lambda}(t) \|w(\lambda)\|,$
- ${} \cdot \ \|v_{t,k}(\lambda) v_t(\lambda)\| \leq \sigma_{\lambda}(k) \|v_t(\lambda)\|.$

Then,

$$\|\hat{\nabla}f(\lambda) - \nabla f(\lambda)\| \le \left(c_1(\lambda) + \frac{c_2(\lambda)}{1 - q_\lambda}\right) \rho_\lambda(t) + c_3(\lambda) \sigma_\lambda(k).$$

Main Contribution (Part 2)

Efficient solvers for the linear system in AID:

fixed point method (FP)
conjugate gradient (CG)

Theorem (CG and FP error upper bounds)

Assume that the lower-level problem is solved as in ITD. Then

$$(\text{FP}) \qquad \|\hat{\nabla}f(\lambda) - \nabla f(\lambda)\| \leq \Big(c_1(\lambda) + c_2(\lambda) \frac{1-q_\lambda^k}{1-q_\lambda}\Big) q_\lambda^t + c_3(\lambda) q_\lambda^k.$$

Moreover, when $\partial_1\Phi(w_t(\lambda),\lambda)$ is symmetric,

$$(\text{CG}) \qquad \|\hat{\nabla}f(\lambda) - \nabla f(\lambda)\| \leq \Big(c_1(\lambda) + \frac{c_2(\lambda)}{1-q_\lambda}\Big)q_\lambda^t + c_3(\lambda)\hat{c}(\lambda)p_\lambda^k,$$

where $p_{\lambda} < q_{\lambda}$.

So... Which method has the best approximation error?

From our analysis:

- ITD, CG and FP converge linearly (in t and k) to $\nabla f(\lambda)$.
- FP bound < ITD bound for every t, when k = t.
- · CG bound < FP bound for k big enough when $\partial_1 \Phi(w_t(\lambda), \lambda)$ is symmetric.

So... Which method has the best approximation error?

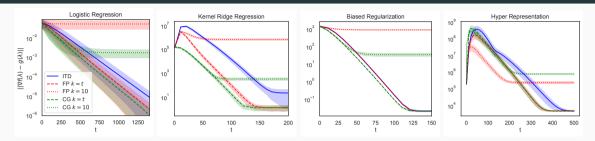
From our analysis:

- ITD, CG and FP converge linearly (in t and k) to $\nabla f(\lambda)$.
- FP bound < ITD bound for every t, when k = t.
- CG bound < FP bound ~ for k big enough when $\partial_1\Phi(w_t(\lambda),\lambda)$ is symmetric.

Is this true also for the actual error in practice?

What happens when $\Phi(\cdot, \lambda)$ is not a contraction?

Hypergradient Approximation on Synthetic Data

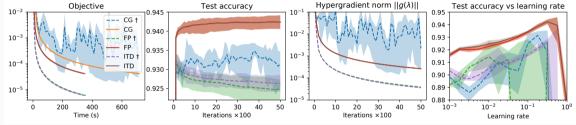


Hypergradient approximation errors (mean/std on randomly drawn values of λ). $g(\lambda)$ is equal to $\nabla f_t(\lambda)$ for ITD and to $\hat{\nabla} f(\lambda)$ for CG and FP. In all settings $\Phi(\cdot,\lambda)$ is a contraction and $\partial_1 \Phi(w,\lambda)$ is symmetric.

- · After a while the error decreases linearly for all methods.
- · Methods with lower error bounds have lower error on average.

Equilibrium Models ¹ on MNIST (Proof of Concept)

$$\min_{\gamma = (A,B,c),\theta} \sum_{i=1}^n \mathrm{CE}(w_i(\gamma)^\top \theta, y_i), \qquad w_i(\gamma) = \phi_i(w_i(\gamma), \gamma) = \tanh(Aw_i(\gamma) + Bx_i + c)$$



 $\phi_i(\cdot,\gamma)$ NOT a contraction for † methods.

- When $\phi_i(\cdot,\gamma)$ is a contraction all the methods perform similarly.
- \cdot ITD is the most stable when the contraction assumption is not satisfied.

¹ Shaojie Bai, J Zico Kolter, and Vladlen Koltun. "Deep equilibrium models". In Advances in Neural Information Processing Systems. 2019, pp. 688–699.

Conclusions

We studied the **iteration complexity** of two strategies used to approximate the *hypergradient* in bilevel problems: **iterative differentiation (ITD)** and **approximate implicit differentiation (AID)**.

We proved non-asymptotic upper bounds on the approximation error

- · CG, FP and ITD converge linearly to the exact hypergradient.
- ITD is generally worse than AID in terms of upper bounds.

We conducted experiments comparing ITD and AID

- If $\Phi(\cdot,\lambda)$ is a contraction, the results confirm the theory.
- If $\Phi(\cdot,\lambda)$ is NOT a contraction, ITD can be still a reliable strategy.

Thank you for the attention

CODE (PyTorch): https://github.com/prolearner/hypertorch

References

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil, M. (2018). Bilevel programming for hyperparameter optimization and meta-learning. In *International Conference on Machine Learning*, pages 1563–1572.

Pedregosa, F. (2016). Hyperparameter optimization with approximate gradient. In *International Conference on Machine Learning*, pages 737–746.

Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S. (2019). Meta-learning with implicit gradients. In *Advances in Neural Information Processing Systems*, pages 113–124.