On the Iteration Complexity of Hypergradient Computation

Riccardo Grazzi

Computational Statistics and Machine Learning, Istituto Italiano di Tecnologia.
Department of Computer Science, University College London.

riccardo.grazzi@iit.it

Joint work with Luca Franceschi, Massimiliano Pontil and Saverio Salzo.

ISTITUTO ITALIANO
DITECNOLOGIA

Bilevel Optimization Problem

Jnin f\) == E(w(\),\) (upper-level)

w(A) == ®(w(N),\) (lower-level)

- Hyperparameter optimization, meta-learning.
- Graph and recurrent neural networks.

How can we solve this optimization problem?

- Black-box methods (random/grid search, Bayesian optimization, ..).

Bilevel Optimization Problem

Jnin f\) := E(w(A\),)\) (upper-level)

w(A) == ®(w(N),\) (lower-level)

- Hyperparameter optimization, meta-learning.
- Graph and recurrent neural networks.

How can we solve this optimization problem?

- Black-box methods (random/grid search, Bayesian optimization, ..).
- Gradient-based methods exploiting the hypergradient V f()).

Computing the Hypergradient V f()\)

Can be really expensive or even impossible to compute Exactly.

Two common approximation strategies are

1. Iterative Differentiation (ITD).
2. Approximate Implicit Differentiation (AID).

Computing the Hypergradient V f()\)

Can be really expensive or even impossible to compute Exactly.

Two common approximation strategies are

1. Iterative Differentiation (ITD).
2. Approximate Implicit Differentiation (AID).

Which one is the best?
- Previous works provide mostly qualitative and empirical results.
Can we have quantitative results on the approximation error?

- Yes! If the fixed point map ®(-, \) is a contraction.

Our Contributions

Both methods achieve non-asymptotic linear convergence rates.
We prove that ITD is generally worse than AID in terms of upper bounds.

If (-, A\) is a contraction, the results confirm the theory.

If ®(-,\) is NOT a contraction, ITD can be still a reliable strategy.

Logistic Regression Kernel Ridge Regression Biased Regularization o Hyper Representation

1IVAA) = g(A)]]|

0 50 100 150 200 0 25 50 75 100 125 150 0 100 200 300 400 500 4
t t t

e -

{h.ﬂ -ﬁ

.......

Source: S.Ravi, H. Larochelle (2016).

- Hyperparameter optimization
(learn the kernel/regularization, ...).

- Meta-learning (MAML, L2LOpt, ...).

(@ e % o ® :: s :_.".:z'

{H.si i @am A o S

{A%m,-a IE A L -
"""" Input Output

Source: snap.stanford.edu/proj/embeddings-www

- Hyperparameter optimization - Graph Neural Networks.
(learn the kernel/regularization, ...).

- Meta-learning (MAML, L2LOpt, ...).

- Some Recurrent Models.

- Deep Equilibrium Models.

RevEm= a- A A e PR
-libAma ok = T
. Input Output
Source: S.Ravi, H. Larochelle (2016). Source: snap.stanford.edu/proj/embeddings-www
- Hyperparameter optimization - Graph Neural Networks.

(learn the kernel/regularization, ...).
- Meta-learning (MAML, L2LOpt, ...).

- Some Recurrent Models.

- Deep Equilibrium Models.

All can be cast into the same bilevel framework where at the lower-level we seek
for the solution to a parametric fixed point equation.

Example: Optimizing the Regularization Hyperparameter in Ridge Regression

o1
/\EI?OIEO) iHXvalw(/\) - yval”%

. 1 A
w() = argmin {£(w,) = 5 |Xw =yl + 5wl }

weRE

w(\) is the unique fixed point of the one step GD map

O(w,\) =w—aVil(w,\)

If the step size « is sufficiently small, ®(-, \) is also a contraction.

The Bilevel Framework

min f()\) := E(w(\),)\) (upper-level)

w()) = ®(w(N),\) (lower-level)

- w(A\) € R? is often not available in closed form.

- fis usually non convex and expensive or impossible to evaluate exactly.

The Bilevel Framework

min f(\) :== E(w()\),\) (upper-level)

w()) = ®(w(N),\) (lower-level)

- w(A\) € R? is often not available in closed form.
- fis usually non convex and expensive or impossible to evaluate exactly.

- Vfis even harder to evaluate.

How to Compute the Hypergradient V f(\)?

Iterative Differentiaton (ITD)
1. Set wy(A) = 0 and compute,

fori=1,2,...t
| wi(N) = ®(w; (M),).

2. Compute f,(A) = E(w,(\), A).

3. Compute V f,(\) efficiently using reverse
(RMAD) or forward (FMAD) mode automatic
differentiation.

How to Compute the Hypergradient V f(\

Iterative Differentiaton (ITD) Approximate Implicit Differentiation (AID)
1. Set wy(A) = 0 and compute, 1. Get w, () with ¢ steps of a lower-level solver.
fori=1,2,..t 2. Compute v, ,,(A) with k steps of a solver for

L w,(A) = B(w,_,(A),). the linear system

2. Compute ft(A) _ E(wt(A), >\) (I - 81<I)<wt(A>v A)T)U = VIE(wt(A)v A)

3. Compute V f,(\) efficiently using reverse 3. Compute the approximate gradient as
(RMAD) or forward (FMAD) mode automatic -
differentiation. V) =V B(wy(A), A)

+ 0y P (w, (M), A)T’Ut,k(A)’

How to Compute the Hypergradient V f(\)?

Iterative Differentiaton (ITD) Approximate Implicit Differentiation (AID)
1. Set wy(A) = 0 and compute, 1. Get w, () with ¢ steps of a lower-level solver.
fori=1,2,..t 2. Compute v, ,,(A) with k steps of a solver for

L w,(A) = B(w,_,(A),). the linear system

2. Compute ft(A) _ E(wt(A), >\) (I - 81<I)<wt(A>v A)T)U = VIE(wt(A)v A)

3. Compute V f,(\) efficiently using reverse 3. Compute the approximate gradient as
(RMAD) or forward (FMAD) mode automatic -
differentiation. V) =V B(wy(A), A)

+ 0y P (w, (M), A)T’Ut,k(A)’

Which one is the best?

A First Comparison

ITD AID
- Ignores the bilevel structure. - Can use any lower-level solver.
- Cost in time (RMAD): O(Cost(f,(A))) - Costin time (k = t): O(Cost(f,(\))).
- Cost in memory (RMAD): O(td). - Cost in memory: O(d).
- Can we control [V f,(X\) — Vf(N)]? - Can we control [V f(A) — Vf(\)|?

Previous Work on the Approximation Error

ITD AID
. argminftﬁargminf c H@f()\)_vfo\)”T)O
(Franceschi et al,, 2018). (Pedregosa, 2016). e

- V£ = VSOl —— 0t a

linear rate in ¢t and & for
meta-learning with biased
regularization
(Rajeswaran et al., 2019).

£ = Bw, (M), A). »

Previous Work on the Approximation Error

ITD AID
. argminftwargminf c H@f()\)_vfo\)”T)O
(Franceschi et al,, 2018). (Pedregosa, 2016). e

- V£ = VSOl —— 0t a

linear rate in ¢t and & for
meta-learning with biased
regularization
(Rajeswaran et al., 2019).

Fe(A) = E(wy(X), A). "

Preliminaries

Assumptions

- ®(-,\) is a contraction with constant ¢, < 1.

< 01P(-, A), 0,2(-,N), VL E(-,A) and V4, E(-, A) are Lipschitz continuous
— f differentiable and

w'(A) == (I —9;®(w(N),\)) 0@ (w(A), \)
V) = VoE(w(),\) +w' (A TV E(w(N),).

1

Main Contribution

ca(N)
ax

IV£.0) = VIO < (e () + 2=+ ¢5(3))

Let v,(\) :== (I — 9;®(w,(N\),\) ")tV E(w,()\),\) and assume that

lwy(A) —wN)] < pa@)[w(N)],
v 1 (A) — v (N)] < o5 (R) v (M)
Then,
ca(N)

IVFN) = V| < (cl@) T o

)or(t) + es(N)ra (k).

12

Main Contribution (Part 2)

Efficient solvers for the linear system in AID:

- fixed point method (FP) - conjugate gradient (CG)

Assume that the lower-level problem is solved as in ITD. Then

a _ .k
() 19500 = VIO < (e13) +) 7=)} + ey(N).

Moreover, when 9, ®(w,(X), A) is symmetric,

(©@) 19 = TN < (e + 220)af -+ eo(Me0r,

where py < g.
13

So... Which method has the best approximation error?

From our analysis:

- ITD, CG and FP converge linearly (in ¢t and k) to Vf(\).
- FP bound < ITD bound for every t, when k = ¢.
- CG bound < FP bound for k big enough when 9; ®(w,(A), A) is symmetric.

So... Which method has the best approximation error?

From our analysis:

- ITD, CG and FP converge linearly (in ¢t and k) to Vf(\).
- FP bound < ITD bound for every t, when k = ¢.
- CG bound < FP bound for k big enough when 9; ®(w,(A), A) is symmetric.

Is this true also for the actual error in practice?

What happens when (-, \) is not a contraction?

Hypergradient Approximation hetic Data

Logistic Regression

Kernel Ridge Regression Biased Regularization Hyper Representation

= R oo 10
=,
S 10 BN
I \‘~
~ 3
=10 | — 1D AN 10
=
= --- FPk=t S
5| e FP k=10 AN s
10° | - cok=t NS 10
------ CGk=10 AN
5
10
0 250 500 750 1000 1250 0 50 100 150 200 0 25 5 75 100 125 150 0 100 200 300 400 500
t t t t

Hypergradient approximation errors (mean/std on randomly drawn values of \).
g(\) is equal to V£,(X) for ITD and to V£(X) for CG and FP. In all settings ®(-, \) is
a contraction and 9, ®(w, A) is symmetric.

- After a while the error decreases linearly for all methods.
- Methods with lower error bounds have lower error on average.

15

Equilibrium Models ' on MNIST (Proof of Concept)

i, >R,

Objective

v)'0,;),

Test accuracy

Hypergradient norm ||g(A)]|

¢i(w;(7),7) = tanh(Aw,;(y) + Bz; + ¢)

Test accuracy vs learning rate

(bi('v’y

0.945 107! 0.95
0.94 1
0.940 -
0.93 4 N
X
0.935 0.921 [
0.91 »’A}e\«’o—"/’
g B
0.930 1 e
g Se_-is 1 [
Y g4 1 I
0.925 4 0.891 s~ |I ‘|
r r r r r r r - r r r - r - — 0.88 r b
0 200 400 600 0 10 20 30 40 50 0 10 20 30 40 50 1073 1072 107t
Time (s) Iterations x100 Iterations X100

- When ¢z(7

) NOT a contraction for § methods.

~) is a contraction all the methods perform similarly.

Learning rate

ITD is the most stable when the contraction assumption is not satisfied.

WShaoj’\e Bai,] Zico Kolter, and Vladlen Koltun. “Deep equilibrium models”. In Advances in Neural Information Processing Systems. 2019, pp. 688-699.

10°

Conclusions

We studied the iteration complexity of two strategies used to approximate the
hypergradient in bilevel problems: iterative differentiation (ITD) and approximate
implicit differentiation (AID).

CG, FP and ITD converge linearly to the exact hypergradient.
ITD is generally worse than AID in terms of upper bounds.

If ®(-, \) is a contraction, the results confirm the theory.
If (-, A\) is NOT a contraction, ITD can be still a reliable strategy.

Thank you for the attention

CODE (PyTorch): https://github.com/prolearner/hypertorch

References

Franceschi, L., Frasconi, P, Salzo, S., Grazzi, R., and Pontil, M. (2018). Bilevel
programming for hyperparameter optimization and meta-learning. In
International Conference on Machine Learning, pages 1563-1572.

Pedregosa, F. (2016). Hyperparameter optimization with approximate gradient. In
International Conference on Machine Learning, pages 737-746.

Rajeswaran, A, Finn, C, Kakade, S. M., and Levine, S. (2019). Meta-learning with
implicit gradients. In Advances in Neural Information Processing Systems,
pages 113-124.

19

	References

