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Bilevel Optimization Problem

min
𝜆∈Λ⊆ℝ𝑛

𝑓(𝜆) ∶= 𝐸(𝑤(𝜆), 𝜆) (upper-level)

𝑤(𝜆) ∶= Φ(𝑤(𝜆), 𝜆) (lower-level)

• Hyperparameter optimization, meta-learning.
• Graph and recurrent neural networks.

How can we solve this optimization problem?

• Black-box methods (random/grid search, Bayesian optimization, ...).

• Gradient-based methods exploiting the hypergradient ∇𝑓(𝜆).
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Computing the Hypergradient ∇𝑓(𝜆)

Can be really expensive or even impossible to compute Exactly.

Two common approximation strategies are

1. Iterative Differentiation (ITD).
2. Approximate Implicit Differentiation (AID).

Which one is the best?

• Previous works provide mostly qualitative and empirical results.

Can we have quantitative results on the approximation error?

• Yes! If the fixed point map Φ(⋅, 𝜆) is a contraction.
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Our Contributions

Upper bounds on the approximation error for both ITD and AID
• Both methods achieve non-asymptotic linear convergence rates.
• We prove that ITD is generally worse than AID in terms of upper bounds.

Extensive experimental comparison among different AID strategies and ITD
• If Φ(⋅, 𝜆) is a contraction, the results confirm the theory.
• If Φ(⋅, 𝜆) is NOT a contraction, ITD can be still a reliable strategy.
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Motivation

Source: S.Ravi, H. Larochelle (2016).

• Hyperparameter optimization
(learn the kernel/regularization, ...).

• Meta-learning (MAML, L2LOpt, ...).

Source: snap.stanford.edu/proj/embeddings-www

• Graph Neural Networks.
• Some Recurrent Models.
• Deep Equilibrium Models.

All can be cast into the same bilevel framework where at the lower-level we seek
for the solution to a parametric fixed point equation.
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Example: Optimizing the Regularization Hyperparameter in Ridge Regression

min
𝜆∈(0,∞)

1
2‖𝑋val𝑤(𝜆) − 𝑦val‖2

2

𝑤(𝜆) = arg min
𝑤∈ℝ𝑑

{ℓ(𝑤, 𝜆) ∶= 1
2‖𝑋𝑤 − 𝑦‖2

2 + 𝜆
2 ‖𝑤‖2

2}

𝑤(𝜆) is the unique fixed point of the one step GD map

Φ(𝑤, 𝜆) = 𝑤 − 𝛼∇1ℓ(𝑤, 𝜆)

If the step size 𝛼 is sufficiently small, Φ(⋅, 𝜆) is also a contraction.
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The Bilevel Framework

min
𝜆∈Λ⊆ℝ𝑛

𝑓(𝜆) ∶= 𝐸(𝑤(𝜆), 𝜆) (upper-level)

𝑤(𝜆) ∶= Φ(𝑤(𝜆), 𝜆) (lower-level)

• 𝑤(𝜆) ∈ ℝ𝑑 is oǒten not available in closed form.
• 𝑓 is usually non convex and expensive or impossible to evaluate exactly.

• ∇𝑓 is even harder to evaluate.
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How to Compute the Hypergradient ∇𝑓(𝜆)?

Iterative Differentiaton (ITD)
1. Set 𝑤0(𝜆) = 0 and compute,

for 𝑖 = 1, 2, … 𝑡
⌊ 𝑤𝑖(𝜆) = Φ(𝑤𝑖−1(𝜆), 𝜆).

2. Compute 𝑓𝑡(𝜆) = 𝐸(𝑤𝑡(𝜆), 𝜆).
3. Compute ∇𝑓𝑡(𝜆) efficiently using reverse
(RMAD) or forward (FMAD) mode automatic
differentiation.

Approximate Implicit Differentiation (AID)
1. Get 𝑤𝑡(𝜆) with 𝑡 steps of a lower-level solver.
2. Compute 𝑣𝑡,𝑘(𝜆) with 𝑘 steps of a solver for
the linear system

(𝐼 − 𝜕1Φ(𝑤𝑡(𝜆), 𝜆)⊤)𝑣 = ∇1𝐸(𝑤𝑡(𝜆), 𝜆).

3. Compute the approximate gradient as

∇̂𝑓(𝜆) ∶=∇2𝐸(𝑤𝑡(𝜆), 𝜆)
+ 𝜕2Φ(𝑤𝑡(𝜆), 𝜆)⊤𝑣𝑡,𝑘(𝜆).

Which one is the best?
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A First Comparison

ITD
• Ignores the bilevel structure.
• Cost in time (RMAD): 𝑂(Cost(𝑓𝑡(𝜆)))
• Cost in memory (RMAD): 𝑂(𝑡𝑑).
• Can we control ‖∇𝑓𝑡(𝜆) − ∇𝑓(𝜆)‖?

AID
• Can use any lower-level solver.
• Cost in time (𝑘 = 𝑡): 𝑂(Cost(𝑓𝑡(𝜆))).
• Cost in memory: 𝑂(𝑑).
• Can we control ‖∇̂𝑓(𝜆) − ∇𝑓(𝜆)‖?

𝑓𝑡(𝜆) = 𝐸(𝑤𝑡(𝜆), 𝜆).
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Previous Work on the Approximation Error

ITD
• arg min 𝑓𝑡 −−−→

𝑡→∞
arg min 𝑓

(Franceschi et al., 2018).

• We provide non-asymptotic upper
bounds on ‖∇𝑓𝑡(𝜆) − ∇𝑓(𝜆)‖.

AID

• ‖∇̂𝑓(𝜆) − ∇𝑓(𝜆)‖ −−−−→
𝑡,𝑘→∞

0
(Pedregosa, 2016).

• ‖∇̂𝑓(𝜆) − ∇𝑓(𝜆)‖ −−−−→
𝑡,𝑘→∞

0 at a
linear rate in 𝑡 and 𝑘 for
meta-learning with biased
regularization
(Rajeswaran et al., 2019).

• We provide non-asymptotic upper
bounds on ‖∇̂𝑓(𝜆) − ∇𝑓(𝜆)‖.

𝑓𝑡(𝜆) = 𝐸(𝑤𝑡(𝜆), 𝜆).
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Preliminaries

Assumptions
• Φ(⋅, 𝜆) is a contraction with constant 𝑞𝜆 < 1.
• 𝜕1Φ(⋅, 𝜆), 𝜕2Φ(⋅, 𝜆), ∇1𝐸(⋅, 𝜆) and ∇2𝐸(⋅, 𝜆) are Lipschitz continuous

⟹ 𝑓 differentiable and

𝑤′(𝜆) ∶= (𝐼 − 𝜕1Φ(𝑤(𝜆), 𝜆))−1𝜕2Φ(𝑤(𝜆), 𝜆)
∇𝑓(𝜆) = ∇2𝐸(𝑤(𝜆), 𝜆) + 𝑤′(𝜆)⊤∇1𝐸(𝑤(𝜆), 𝜆).
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Main Contribution

Theorem (ITD error upper bound)

‖∇𝑓𝑡(𝜆) − ∇𝑓(𝜆)‖ ≤ (𝑐1(𝜆) + 𝑐2(𝜆)
𝑞𝜆

𝑡 + 𝑐3(𝜆))𝑞𝑡
𝜆,

Theorem (AID error upper bound)
Let 𝑣𝑡(𝜆) ∶= (𝐼 − 𝜕1Φ(𝑤𝑡(𝜆), 𝜆)⊤)−1∇1𝐸(𝑤𝑡(𝜆), 𝜆) and assume that

• ‖𝑤𝑡(𝜆) − 𝑤(𝜆)‖ ≤ 𝜌𝜆(𝑡)‖𝑤(𝜆)‖,
• ‖𝑣𝑡,𝑘(𝜆) − 𝑣𝑡(𝜆)‖ ≤ 𝜎𝜆(𝑘)‖𝑣𝑡(𝜆)‖.

Then,
‖∇̂𝑓(𝜆) − ∇𝑓(𝜆)‖ ≤ (𝑐1(𝜆) + 𝑐2(𝜆)

1 − 𝑞𝜆
)𝜌𝜆(𝑡) + 𝑐3(𝜆)𝜎𝜆(𝑘).
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Main Contribution (Part 2)

Efficient solvers for the linear system in AID:

• fixed point method (FP) • conjugate gradient (CG)

Theorem (CG and FP error upper bounds)
Assume that the lower-level problem is solved as in ITD. Then

(FP) ‖∇̂𝑓(𝜆) − ∇𝑓(𝜆)‖ ≤ (𝑐1(𝜆) + 𝑐2(𝜆)1 − 𝑞𝑘
𝜆

1 − 𝑞𝜆
)𝑞𝑡

𝜆 + 𝑐3(𝜆)𝑞𝑘
𝜆.

Moreover, when 𝜕1Φ(𝑤𝑡(𝜆), 𝜆) is symmetric,

(CG) ‖∇̂𝑓(𝜆) − ∇𝑓(𝜆)‖ ≤ (𝑐1(𝜆) + 𝑐2(𝜆)
1 − 𝑞𝜆

)𝑞𝑡
𝜆 + 𝑐3(𝜆) ̂𝑐(𝜆)𝑝𝑘

𝜆,

where 𝑝𝜆 < 𝑞𝜆.
13



So... Which method has the best approximation error?

From our analysis:

• ITD, CG and FP converge linearly (in 𝑡 and 𝑘) to ∇𝑓(𝜆).
• FP bound < ITD bound for every 𝑡, when 𝑘 = 𝑡.
• CG bound < FP bound for 𝑘 big enough when 𝜕1Φ(𝑤𝑡(𝜆), 𝜆) is symmetric.

Is this true also for the actual error in practice?

What happens when Φ(⋅, 𝜆) is not a contraction?
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Hypergradient Approximation on Synthetic Data
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Hypergradient approximation errors (mean/std on randomly drawn values of 𝜆).
𝑔(𝜆) is equal to ∇𝑓𝑡(𝜆) for ITD and to ∇̂𝑓(𝜆) for CG and FP. In all settings Φ(⋅, 𝜆) is
a contraction and 𝜕1Φ(𝑤, 𝜆) is symmetric.

• Aǒter a while the error decreases linearly for all methods.
• Methods with lower error bounds have lower error on average.

15



Equilibrium Models 1 on MNIST (Proof of Concept)

min
𝛾=(𝐴,𝐵,𝑐),𝜃

𝑛
∑
𝑖=1

CE(𝑤𝑖(𝛾)⊤𝜃, 𝑦𝑖), 𝑤𝑖(𝛾) = 𝜙𝑖(𝑤𝑖(𝛾), 𝛾) = tanh(𝐴𝑤𝑖(𝛾) + 𝐵𝑥𝑖 + 𝑐)
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𝜙𝑖(⋅, 𝛾) NOT a contraction for † methods.
• When 𝜙𝑖(⋅, 𝛾) is a contraction all the methods perform similarly.
• ITD is the most stable when the contraction assumption is not satisfied.

1Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “Deep equilibrium models”. In Advances in Neural Information Processing Systems. 2019, pp. 688–699.
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Conclusions

We studied the iteration complexity of two strategies used to approximate the
hypergradient in bilevel problems: iterative differentiation (ITD) and approximate
implicit differentiation (AID).

We proved non-asymptotic upper bounds on the approximation error
• CG, FP and ITD converge linearly to the exact hypergradient.
• ITD is generally worse than AID in terms of upper bounds.

We conducted experiments comparing ITD and AID
• If Φ(⋅, 𝜆) is a contraction, the results confirm the theory.
• If Φ(⋅, 𝜆) is NOT a contraction, ITD can be still a reliable strategy.
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Thank you for the attention
CODE (PyTorch): https://github.com/prolearner/hypertorch
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