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Bilevel Optimization Problem

Jnin f\) == E(w(\),\) (upper-level)

w(A) == ®(w(N),\) (lower-level)

- Hyperparameter optimization, meta-learning.
- Graph and recurrent neural networks.

How can we solve this optimization problem?

- Black-box methods (random/grid search, Bayesian optimization, ..).



Bilevel Optimization Problem

Jnin f\) := E(w(A\),)\) (upper-level)

w(A) == ®(w(N),\) (lower-level)

- Hyperparameter optimization, meta-learning.
- Graph and recurrent neural networks.

How can we solve this optimization problem?

- Black-box methods (random/grid search, Bayesian optimization, ..).
- Gradient-based methods exploiting the hypergradient V f()).



Computing the Hypergradient V f()\)

Can be really expensive or even impossible to compute Exactly.

Two common approximation strategies are

1. Iterative Differentiation (ITD).
2. Approximate Implicit Differentiation (AID).



Computing the Hypergradient V f()\)

Can be really expensive or even impossible to compute Exactly.

Two common approximation strategies are

1. Iterative Differentiation (ITD).
2. Approximate Implicit Differentiation (AID).

Which one is the best?
- Previous works provide mostly qualitative and empirical results.
Can we have quantitative results on the approximation error?

- Yes! If the fixed point map ®(-, \) is a contraction.



Our Contributions

Both methods achieve non-asymptotic linear convergence rates.
We prove that ITD is generally worse than AID in terms of upper bounds.

If (-, A\) is a contraction, the results confirm the theory.

If ®(-,\) is NOT a contraction, ITD can be still a reliable strategy.
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- Hyperparameter optimization
(learn the kernel/regularization, ...).

- Meta-learning (MAML, L2LOpt, ...).
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- Hyperparameter optimization - Graph Neural Networks.
(learn the kernel/regularization, ...).

- Meta-learning (MAML, L2LOpt, ...).

- Some Recurrent Models.

- Deep Equilibrium Models.
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- Hyperparameter optimization - Graph Neural Networks.

(learn the kernel/regularization, ...).
- Meta-learning (MAML, L2LOpt, ...).

- Some Recurrent Models.

- Deep Equilibrium Models.

All can be cast into the same bilevel framework where at the lower-level we seek
for the solution to a parametric fixed point equation.



Example: Optimizing the Regularization Hyperparameter in Ridge Regression

o1
/\EI?OIEO) iHXvalw(/\) - yval”%

. 1 A
w() = argmin {£(w, ) = 5 |Xw =yl + 5wl }

weRE

w(\) is the unique fixed point of the one step GD map

O(w,\) =w—aVil(w,\)

If the step size « is sufficiently small, ®(-, \) is also a contraction.



The Bilevel Framework

min f()\) := E(w(\),)\) (upper-level)

w()) = ®(w(N),\) (lower-level)

- w(A\) € R? is often not available in closed form.

- fis usually non convex and expensive or impossible to evaluate exactly.



The Bilevel Framework

min f(\) :== E(w()\),\) (upper-level)

w()) = ®(w(N),\) (lower-level)

- w(A\) € R? is often not available in closed form.
- fis usually non convex and expensive or impossible to evaluate exactly.

- Vfis even harder to evaluate.



How to Compute the Hypergradient V f(\)?

Iterative Differentiaton (ITD)
1. Set wy(A) = 0 and compute,

fori=1,2,...t
| wi(N) = ®(w; (M), ).

2. Compute f,(A) = E(w,(\), A).

3. Compute V f,(\) efficiently using reverse
(RMAD) or forward (FMAD) mode automatic
differentiation.




How to Compute the Hypergradient V f(\

Iterative Differentiaton (ITD) Approximate Implicit Differentiation (AID)
1. Set wy(A) = 0 and compute, 1. Get w, () with ¢ steps of a lower-level solver.
fori=1,2,..t 2. Compute v, ,,(A) with k steps of a solver for

L w,(A) = B(w,_,(A), ). the linear system
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(RMAD) or forward (FMAD) mode automatic -
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Which one is the best?



A First Comparison

ITD AID
- Ignores the bilevel structure. - Can use any lower-level solver.
- Cost in time (RMAD): O(Cost(f,(A))) - Costin time (k = t): O(Cost(f,(\))).
- Cost in memory (RMAD): O(td). - Cost in memory: O(d).
- Can we control [V f,(X\) — Vf(N)]? - Can we control [V f(A) — Vf(\)|?




Previous Work on the Approximation Error

ITD AID
. argminftﬁargminf c H@f()\)_vfo\)”T)O
(Franceschi et al,, 2018). (Pedregosa, 2016). e
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linear rate in ¢t and & for
meta-learning with biased
regularization
(Rajeswaran et al., 2019).
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(Rajeswaran et al., 2019).

Fe(A) = E(wy(X), A). "



Preliminaries

Assumptions

- ®(-,\) is a contraction with constant ¢, < 1.

< 01P(-, A), 0,2(-,N), VL E(-,A) and V4, E(-, A) are Lipschitz continuous
— f differentiable and

w'(A) == (I —9;®(w(N),\)) 0@ (w(A), \)
V) = VoE(w(),\) +w' (A TV E(w(N), ).
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Main Contribution

ca(N)
ax

IV£.0) = VIO < (e () + 2=+ ¢5(3) )

Let v,(\) :== (I — 9;®(w,(N\),\) ")tV E(w,()\),\) and assume that

lwy(A) —wN)] < pa@)[w(N)],
v 1 (A) — v (N)] < o5 (R) v (M)
Then,
ca(N)

IVFN) = V| < (cl@) T o

)or(t) + es(N)ra (k).

12



Main Contribution (Part 2)

Efficient solvers for the linear system in AID:

- fixed point method (FP) - conjugate gradient (CG)

Assume that the lower-level problem is solved as in ITD. Then

a _ .k
() 19500 = VIO < (e13) + ) 7= )} + ey(N).

Moreover, when 9, ®(w,(X), A) is symmetric,

(©@) 19 = TN < (e + 220 )af -+ eo(Me0r,

where py < g.
13



So... Which method has the best approximation error?

From our analysis:

- ITD, CG and FP converge linearly (in ¢t and k) to Vf(\).
- FP bound < ITD bound for every t, when k = ¢.
- CG bound < FP bound for k big enough when 9; ®(w,(A), A) is symmetric.



So... Which method has the best approximation error?

From our analysis:

- ITD, CG and FP converge linearly (in ¢t and k) to Vf(\).
- FP bound < ITD bound for every t, when k = ¢.
- CG bound < FP bound for k big enough when 9; ®(w,(A), A) is symmetric.

Is this true also for the actual error in practice?

What happens when (-, \) is not a contraction?



Hypergradient Approximation hetic Data

Logistic Regression

Kernel Ridge Regression Biased Regularization Hyper Representation
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Hypergradient approximation errors (mean/std on randomly drawn values of \).
g(\) is equal to V£,(X) for ITD and to V£(X) for CG and FP. In all settings ®(-, \) is
a contraction and 9, ®(w, A) is symmetric.

- After a while the error decreases linearly for all methods.
- Methods with lower error bounds have lower error on average.
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Equilibrium Models ' on MNIST (Proof of Concept)
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Hypergradient norm ||g(A)]|

¢i(w;(7),7) = tanh(Aw,;(y) + Bz; + ¢)

Test accuracy vs learning rate
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- When ¢z(7

) NOT a contraction for § methods.

~) is a contraction all the methods perform similarly.

Learning rate

ITD is the most stable when the contraction assumption is not satisfied.

WShaoj’\e Bai, ] Zico Kolter, and Vladlen Koltun. “Deep equilibrium models”. In Advances in Neural Information Processing Systems. 2019, pp. 688-699.
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Conclusions

We studied the iteration complexity of two strategies used to approximate the
hypergradient in bilevel problems: iterative differentiation (ITD) and approximate
implicit differentiation (AID).

CG, FP and ITD converge linearly to the exact hypergradient.
ITD is generally worse than AID in terms of upper bounds.

If ®(-, \) is a contraction, the results confirm the theory.
If (-, A\) is NOT a contraction, ITD can be still a reliable strategy.



Thank you for the attention

CODE (PyTorch): https://github.com/prolearner/hypertorch
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