NetGAN without GAN:
From Random Walks to Low-Rank Approximations

Luca Rendsburg, Holger Heidrich, Ulrike von Luxburg

ICML 2020

NetGAN

N

Output B 4 (4

Input %

Output @ﬁ ﬁﬁ %

Input %

|

Random walks {%} }
.....

Output @ﬁ ﬁﬁ %

Input

Random walks

Learn random
walk distribution

W

|

0 012
012 0
0.08

s 0.08
s 0.05

7
Output K}E{

o

Input

Random walks

Learn random
walk distribution

Synthetic
random walks

Output K}E{

W

|

0 012
012 0
0.08

s 0.08
s 0.05

<

o

Input ”ﬁ%
Random walks {%},l%;}
'

Learn random
. GAN

walk distribution

|
Synthetic
random walks I

probability matrix

l()& ()U

Output “'gi) ﬁﬁ %

Our contribution

Conceptual analysis

Our contribution

Conceptual analysis
*» Inductive bias of NetGAN

Our contribution

Conceptual analysis
*» Inductive bias of NetGAN

» Bypass sampling random walks

Our contribution

Conceptual analysis
*» Inductive bias of NetGAN

» Bypass sampling random walks

Simplified version (no GAN, no sampling): “Cross-Entropy Low-rank Logits
(CELL)”

Our contribution

Conceptual analysis
*» Inductive bias of NetGAN

» Bypass sampling random walks

Simplified version (no GAN, no sampling): “Cross-Entropy Low-rank Logits
(CELL)”

» Higher transparency

Our contribution

Conceptual analysis
*» Inductive bias of NetGAN

» Bypass sampling random walks

Simplified version (no GAN, no sampling): “Cross-Entropy Low-rank Logits
(CELL)”

» Higher transparency

» Comparable generalization performance

Our contribution

Conceptual analysis
*» Inductive bias of NetGAN

» Bypass sampling random walks

Simplified version (no GAN, no sampling): “Cross-Entropy Low-rank Logits
(CELL)”

» Higher transparency
» Comparable generalization performance

» Huge speedup

NetGAN: learning step

» Goal: learn random walk distribution

Generator NetGAN
architecture

G(z) architecture

Generator

Discrimi-
c nator
—
o Graph
— hy
Dreal Drake
Random
2« N(0,l4) walk

(2) Generator architecture (b) NetGAN architecture

NetGAN: learning step

» Goal: learn random walk distribution

» Training set: unbiased random walks {(fu(()i), . ,vr}i))}i of length T" over input
graph

Generator

NetGAN
architecture - @ S G(z) architecture
sample
Bl LTI Generator
NI
% i Discrimi-
/ nator
—Cy /
; Graph
/
. h {
0 Drest Draee
! Random
z < N(0,lq) " alk

(a) Generator architecture (b) NetGAN architecture

NetGAN: learning step

» Goal: learn random walk distribution

» Training set: unbiased random walks {(fu((f), . ,fugp’))}i of length T" over input
graph

» Generator: generate sequences {(w(()i), ce wgﬁ))}i of “synthetic” random walks

Generator AN NetGAN
architecture . @ — G(z) architecture
sample
Bl T T Tl Generator
N
% i Discrimi-
c / nator
. /
o ‘,' Graph
/
—hy H
H Dreal Drake
/ L———1 Random
2 N(0,lq) " walk

(a) Generator architecture (b) NetGAN architecture

NetGAN: learning step

» Goal: learn random walk distribution

» Training set: unbiased random walks {(v((f), . ,fugp’))}i of length T" over input
graph

» Generator: generate sequences {(w(()i), e wg))}i of “synthetic” random walks

» Discriminator: distinguish synthetic from real random walks

Generator NetGAN
architecture @ S G(z) architecture
immpl:
ﬂ..ﬂ Generator
N
C] /
. /
o " Graph
—h, /
' i
/ Random
z - N(0,l4) A walk

(a) Generator architecture (b) NetGAN architecture

NetGAN: learning step

» Goal: learn random walk distribution

» Training set: unbiased random walks {(v(()i), . ,vr}i))}i of length T" over input
graph

» Generator: generate sequences {(w(()i), e wg))}i of “synthetic” random walks

» Discriminator: distinguish synthetic from real random walks

Architecture: LSTMs with Wasserstein loss

v

Generator

NetGAN
architecture @ — G(z) architecture

immpl:
ﬂ..ﬂ Generator

—Cy

— hy

L——— Random

2« N(0,l4) walk

(a) Generator architecture (b) NetGAN architecture

NetGAN: reconstruction step

Generator

NetGAN: reconstruction step

Generator

Generate many synthetic
random walks

o

NetGAN: reconstruction step

Generator

|
Generate many synthetic
random walks I
v

Count transitions in
score matrix S

0 360 212
307 0 .- 150 . S
S S;,; = # transitions from i to j

240 143 - 0

NetGAN: reconstruction step

Generator

|
Generate many synthetic
random walks I
v

Count transitions in o
score matrix S :

240

Transform S into edge oo
probability matrix A' :

0.08

360 ---
- 150

) Si,

0

212

0

- 0.08
- 0.05

0

j = # transitions from i to j

J T Xk, max{Sk,1, Sk}

NetGAN: reconstruction step
Generator

|
Generate many synthetic
random walks I
v

Count transitions in a0 N o
trix S C S;,; = # transitions from i to j
score ma 20 113 - 0
Transform Sinto edge (on 0 0 0n) ¢ waxisiy s
probability matrix AT G 65 T S max{ S5

Sample edges
without replacement

Overview of simplifications

Sample Train GAN Sample Count
NetGAN: random walks tal;li STM random walks transitions in Clowat
from graph wi from generator| | score matrix Score matrix
Input ~— into edge-

graph independent
model

Sample
output graph

Overview of simplifications

Sample Train GAN Sample Count
NetGAN: random walks :}inL st™ random walks transitions in
from graph wi from generator score matrix
Input
graph .So.lve . Solve
optimization .
CELL: problem s
ith X problem for
WILA ran score matrix

constraint

Convert
score matrix

into edge-
independent
model

Sample
output graph

Overview of simplifications

Sample Train GAN Sample Count
NetGAN: random walks rain t—~| random walks transitions in
@ with LSTM .
rom graph from generator score matrix
Input
graph .So.l ve Solve
optimization .
CELL: problem s
X problem for
with rank .
. score matrix
constraint —

1. Replace GAN with rank-constrained optimization problem

Convert
score matrix

into edge-
independent
model

Sample
output graph

Overview of simplifications

Sample Train GAN Sample Count
NetGAN: random walks rain t—~| random walks transitions in
@ with LSTM .
rom graph from generator score matrix
Input
graph .So.l ve Solve
optimization .
CELL: problem S
X problem for
with rank .
. score matrix
constraint —

1. Replace GAN with rank-constrained optimization problem

2. Bypass random walk sampling

Convert
score matrix

into edge-
independent
model

Sample
output graph

Replacing the GAN (1)

Sample Sample Count
NetGAN: random walks random walks transitions in Gl
from graph from generator| | score matrix CEOE mlEkT Sample
Input into edge- output graph
graph Solve independent

eigenvector model
problem for
score matrix

CELL:

1. Replace GAN with rank-constrained optimization problem

2. Bypass random walk sampling

6/14

Replacing the GAN (2)
What causes the generalization of NetGAN?

Replacing the GAN (2)
What causes the generalization of NetGAN?

The random walks?

Replacing the GAN (2)
What causes the generalization of NetGAN?

The random walks?
X Random walk distribution determines graph

Replacing the GAN (2)
What causes the generalization of NetGAN?

The random walks?
X Random walk distribution determines graph

The GAN?

Replacing the GAN (2)
What causes the generalization of NetGAN?

The random walks?
X Random walk distribution determines graph

The GAN?
X Perfectly learning random walk distribution simply memorizes graph

Replacing the GAN (2)
What causes the generalization of NetGAN?
The random walks?

X Random walk distribution determines graph

The GAN?
X Perfectly learning random walk distribution simply memorizes graph

The LSTM?

Replacing the GAN (2)
What causes the generalization of NetGAN?
The random walks?

X Random walk distribution determines graph

The GAN?
X Perfectly learning random walk distribution simply memorizes graph

The LSTM?
X No long-term dependencies in random walks

/ 14

Replacing the GAN (2)
What causes the generalization of NetGAN?

The random walks?
X Random walk distribution determines graph

The GAN?
X Perfectly learning random walk distribution simply memorizes graph

The LSTM?
X No long-term dependencies in random walks

—— NetGAN —:= Val-Criterion —:— EO-Criterion

L

1.00

o
9
a

o
N
a

Edge overlap
o
wv
o

I |
ok 20k 40k 60k 80k 100k
Training iteration

o
o
o

/ 14

Replacing the GAN (2)
What causes the generalization of NetGAN?

The random walks?
X Random walk distribution determines graph

The GAN?

X Perfectly learning random walk distribution simply memorizes graph
The LSTM?

X No long-term dependencies in random walks

—— NetGAN —:= Val-Criterion —:— EO-Criterion

L

1.00

o
9
a

o
N
a

Edge overlap
o
wv
o

0.00 ! ! ‘ ‘
Ok 20k 40k 60k 80k 100k

Computational trick! Training iteration

Replacing the GAN (2)
What causes the generalization of NetGAN?

The random walks?
X Random walk distribution determines graph

The GAN?
X Perfectly learning random walk distribution simply memorizes graph

The LSTM?
X No long-term dependencies in random walks

—— NetGAN —:= Val-Criterion —:— EO-Criterion

L

1.00

o
9
a

o
N
a

Edge overlap
o
wv
o

0.00 ! ! ‘ ‘
Ok 20k 40k 60k 80k 100k

Computational trick! Training iteration
v/ Low-dimensional bottleneck

/14

Replacing the GAN (3)

» Number of nodes N, set of random walks R, low rank H, row-wise softmax oows

Replacing the GAN (3)

» Number of nodes N, set of random walks R, low rank H, row-wise softmax oows

» Generator learns random walk distribution by learning random walk transition
matrix from parametric family

P = {Urows(W) € RNXN :We RNXN, rank(W) < H} .

Replacing the GAN (3)

» Number of nodes N, set of random walks R, low rank H, row-wise softmax oows

» Generator learns random walk distribution by learning random walk transition
matrix from parametric family

P = {Urows(W) € RNXN :We RNXN, rank(W) < H} .

» Do this directly with maximum likelihood estimation

min —Z logo ;
RN N g rows) 4,7
(i.)eR

s.t. rank(W) < H.

Bypassing sampling (1)

NetGAN: with LSTM

Input —
optimization
CELL: problem

with rank

1. Replace GAN with rank-constrained optimization problem

2. Bypass random walk sampling

Train GAN | |

constraint

Convert
score matrix
into edge-
independent
model

Sample
output graph

9/14

Bypassing sampling (2)

» NetGAN samples many random walks from input graph & from generator

Bypassing sampling (2)

» NetGAN samples many random walks from input graph & from generator

» Example: On CORA-ML (2,810/ 7,981), sees every edge ~ 14,000 times on
average

Bypassing sampling (2)

» NetGAN samples many random walks from input graph & from generator

» Example: On CORA-ML (2,810/ 7,981), sees every edge ~ 14,000 times on
average

» Count random walk transitions in score matrix S € RN*N

Bypassing sampling (2)

» NetGAN samples many random walks from input graph & from generator

» Example: On CORA-ML (2,810/ 7,981), sees every edge ~ 14,000 times on
average

» Count random walk transitions in score matrix S € RN*N

» Length of random walk 7", amount of random walks nn. Normalized score matrix

converges
S a.s
— ——— di P
nl nT—w lag(ﬂ-) ’

where P is corresponding random walk transition matrix and 7 its stationary
distribution.

Bypassing sampling (2)

» NetGAN samples many random walks from input graph & from generator

» Example: On CORA-ML (2,810/ 7,981), sees every edge ~ 14,000 times on
average

» Count random walk transitions in score matrix S € RN*N

» Length of random walk 7", amount of random walks nn. Normalized score matrix

converges
S a.s
— ——— di P
nl nT—w lag(ﬂ-) ’

where P is corresponding random walk transition matrix and 7 its stationary
distribution.

Replace normalized score matrix
with its limit

Bypassing sampling (3)

1. Learning step (with adjacency matrix A)

s. t.

rank(W) < H

min
WGRN X N

s. t.

_Z A1 10g 0rows(W)k
Tl

rank(W) < H

Bypassing sampling (3)

1. Learning step (with adjacency matrix A)

s.t. rank(W) < H

min —ZA log o W
WeRN XN kl k,l g rows()k;,la

s.t. rank(W) < H

2. Reconstruction step (with synthetic transition matrix P*)

Compute S by counting
transitions of synthetic random
walks

— | .S = diag(n™) P*

Bypassing sampling (3)

1. Learning step (with adjacency matrix A)

ngR%VnXN _Z log Urows(W)i,j ’ nglé\Jan _Z Ak,l log Urows(W)k,l)
(1.4)eR — k.l
s.t. rank(W) < H s.t. rank(W) < H

2. Reconstruction step (with synthetic transition matrix P*)

Compute S by counting
transitions of synthetic random | — |S = diag(m*)P*
walks

‘ Bypass sampling in both steps ‘

Experiments (1)
Does CELL generate the same type of graphs as NetGAN?

Experiments (1)
Does CELL generate the same type of graphs as NetGAN?
Yes!

Experiments (1)

Does CELL generate the same type of graphs as

Rel. edge
distr. entr.

300

(%)
=3
3

Max. degree

=)
3

54
o
3

o
=3

0.94

Yes!

Graph: CORA-ML citation network (2,810/ 7,981)

16 30 43 56
Edge overlap (in %)

69

iy

x
. [}

x
L]

16 30 43 56
Edge overlap (in %)

69

NetGAN?

Edge overlap (in %)

Edge overlap (in %)

Target (input graph) ¥ CELL ¥ NetGAN
1.85 i E
. s § '
o
g 000 Sisofs oy s 2w ="
3 z LA
i h Bl T
Z-o0s| " E ® s . 175
- o
[
¥ LY 170
-0.10
3 16 30 43 56 69 3 16 30 43 56 69
Edge overlap (in %) Edge overlap (in %)
0.08 il
. iF " _— I
£ 1 x 5=
?-: 0.06 i] 'i % 0.4 . o=
0 i= L 8
£0.04 [S
g 1 £
zZ o P 803
go02f
[}
0.00&
3 16 30 43 56 69 3 16 30 43 56 69

Experiments (2)

CELL is significantly faster

Experiments (2)

CELL is significantly faster

Table: Training time (in seconds) for NetGAN and CELL on a variety of networks. NetGAN
requires a GPU, while CELL runs on a CPU.

DataA SET (NopEs/ Epces) NETGAN CELL

CORA-ML (2,810/ 7,981) 7,478 21
CITESEER (2,110/ 3,668) 4,654 10
PoLBroas (1,222/ 16,779) 55,276 15

(
(
RT-GOP (4,687/ 5,529) 14,800 23
WEB-EDU (3,031/ 6,474) 11,000 16

Conclusion

NetGAN

Conclusion

NetGAN

» Successful graph generative model

Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis

Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis

» Uncover inductive bias: low-rank assumption

Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis
» Uncover inductive bias: low-rank assumption

» Starting point to better understand inductive bias

Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis
» Uncover inductive bias: low-rank assumption
» Starting point to better understand inductive bias

» Bypass sampling by using a limit argument

Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis
» Uncover inductive bias: low-rank assumption
» Starting point to better understand inductive bias
» Bypass sampling by using a limit argument

» Propose simplified algorithm with comparable generalization performance

Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis
» Uncover inductive bias: low-rank assumption
» Starting point to better understand inductive bias
» Bypass sampling by using a limit argument
» Propose simplified algorithm with comparable generalization performance

Future work

Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis
» Uncover inductive bias: low-rank assumption
» Starting point to better understand inductive bias
» Bypass sampling by using a limit argument
» Propose simplified algorithm with comparable generalization performance

Future work

» Explain contribution of low-rank assumption

Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis
» Uncover inductive bias: low-rank assumption
» Starting point to better understand inductive bias
» Bypass sampling by using a limit argument
» Propose simplified algorithm with comparable generalization performance

Future work

» Explain contribution of low-rank assumption

