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Our contribution

Conceptual analysis
*» Inductive bias of NetGAN

» Bypass sampling random walks

Simplified version (no GAN, no sampling): “Cross-Entropy Low-rank Logits
(CELL)”

» Higher transparency
» Comparable generalization performance

» Huge speedup
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NetGAN: learning step

» Goal: learn random walk distribution

» Training set: unbiased random walks {(v(()i), . ,vr}i))}i of length T" over input
graph

» Generator: generate sequences {(w(()i), e wg))}i of “synthetic” random walks

» Discriminator: distinguish synthetic from real random walks

Architecture: LSTMs with Wasserstein loss
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Replacing the GAN (1)
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Replacing the GAN (3)

» Number of nodes N, set of random walks R, low rank H, row-wise softmax oows

» Generator learns random walk distribution by learning random walk transition
matrix from parametric family

P = {Urows(W) € RNXN :We RNXN, rank(W) < H} .

» Do this directly with maximum likelihood estimation

min —Z logo ;
RN N g rows ) 4,7
(i.)eR

s.t.  rank(W) < H.
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Bypassing sampling (2)

» NetGAN samples many random walks from input graph & from generator

» Example: On CORA-ML (2,810/ 7,981), sees every edge ~ 14,000 times on
average

» Count random walk transitions in score matrix S € RN*N

» Length of random walk 7", amount of random walks nn. Normalized score matrix

converges
S a.s
— ——— di P
nl nT—w lag(ﬂ-) ’

where P is corresponding random walk transition matrix and 7 its stationary
distribution.

Replace normalized score matrix
with its limit
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Bypassing sampling (3)

1. Learning step (with adjacency matrix A)

ngR%VnXN _Z log Urows(W)i,j ’ nglé\Jan _Z Ak,l log Urows(W)k,l )
(1.4)eR — k.l
s.t. rank(W) < H s.t. rank(W) < H

2. Reconstruction step (with synthetic transition matrix P*)

Compute S by counting
transitions of synthetic random | — |S = diag(m*)P*
walks

‘ Bypass sampling in both steps ‘
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Experiments (2)

CELL is significantly faster

Table: Training time (in seconds) for NetGAN and CELL on a variety of networks. NetGAN
requires a GPU, while CELL runs on a CPU.

DataA SET (NopEs/ Epces) NETGAN CELL

CORA-ML (2,810/ 7,981) 7,478 21
CITESEER  (2,110/ 3,668) 4,654 10
PoLBroas (1,222/ 16,779) 55,276 15

(
(
RT-GOP  (4,687/ 5,529) 14,800 23
WEB-EDU (3,031/ 6,474) 11,000 16




Conclusion

NetGAN



Conclusion

NetGAN

» Successful graph generative model



Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent



Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis



Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis

» Uncover inductive bias: low-rank assumption



Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis
» Uncover inductive bias: low-rank assumption

» Starting point to better understand inductive bias



Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis
» Uncover inductive bias: low-rank assumption
» Starting point to better understand inductive bias

» Bypass sampling by using a limit argument



Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis
» Uncover inductive bias: low-rank assumption
» Starting point to better understand inductive bias
» Bypass sampling by using a limit argument

» Propose simplified algorithm with comparable generalization performance



Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis
» Uncover inductive bias: low-rank assumption
» Starting point to better understand inductive bias
» Bypass sampling by using a limit argument
» Propose simplified algorithm with comparable generalization performance

Future work



Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis
» Uncover inductive bias: low-rank assumption
» Starting point to better understand inductive bias
» Bypass sampling by using a limit argument
» Propose simplified algorithm with comparable generalization performance

Future work

» Explain contribution of low-rank assumption



Conclusion

NetGAN
» Successful graph generative model

» Complicated and not transparent

Our contribution: conceptual analysis
» Uncover inductive bias: low-rank assumption
» Starting point to better understand inductive bias
» Bypass sampling by using a limit argument
» Propose simplified algorithm with comparable generalization performance

Future work

» Explain contribution of low-rank assumption



