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But, user interactions with algorithms have other implications 
• Loans Approval
• Candidate for Job Interviews
• Candidate for Medical Treatments

Bias in Algorithms? 
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Collection of 𝑛𝑛 points in a metric space

 Fair Radius (𝒓𝒓𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 𝒗𝒗 ): 

distance of 𝑣𝑣 to its (𝑛𝑛/𝑘𝑘)-th closest neighbor

[JKL20] NP-hard to decide whether there exists a fair solution 

 𝜶𝜶-Fair 𝒌𝒌-Clustering: Find 𝒌𝒌 centers s.t. each 𝑣𝑣 has a 

center in distance at most 𝛼𝛼 × its fair radius (i.e., 𝑟𝑟fair 𝑣𝑣 )
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[Jung, Kannan, Lutz’20] introduces this notion of fairness

• Finds a 2-fair solution
 Each 𝑣𝑣 has a center in distance at most 2 ⋅ 𝑟𝑟fair 𝑣𝑣
 In [Chan-Dinitz-Gupta’06] & [Charikar-Makarychev-Makarychev’10]

Only a fair solution, without optimizing the clustering cost

• k-median: total distance of points to their centers

• k-means: total squared distance of points to their centers

• k-center: maximum distance of any point to its center
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[This work] Local search returns (O(1),O(1)) approximation for 
𝛼𝛼-fair 𝑘𝑘-median clustering. I.e., finds a set of k centers C s.t.
• C is O(𝛼𝛼)-fair and   
• cost of C is at most constant times the cost of an optimal 𝛼𝛼-fair solution

Our algorithm works for any ℓ𝒑𝒑-norm objective (e.g., k-means & k-center)

• k-means: O(𝛼𝛼)-fair and cost is constant times the optimal 𝛼𝛼-fair k-means
• k-center: O(𝛼𝛼)-fair and cost is O(log𝑛𝑛) times the optimal 𝛼𝛼-fair k-center
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𝑩𝑩 𝑐𝑐1,𝛼𝛼𝑟𝑟fair 𝑐𝑐1 , … ,𝑩𝑩(𝑐𝑐𝑘𝑘 ,𝛼𝛼𝑟𝑟fair(𝑐𝑐ℓ))

Lemma. Any set of k centers intersecting 
with critical balls is O(𝛼𝛼)-fair.
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Step 1. Find a set of critical balls of size ℓ ≤ 𝑘𝑘
Step 2. Run local search algorithm 

Step 2-a. Find an initial (fair) solution

Step 2-b. Local Update

Is there a swap of size at most t reducing cost by (1+𝜖𝜖)?
• Not all swaps are feasible

requires more complex analysis
• “valid” swaps of size at most four suffices

 The algorithm terminates after O(log 𝑛𝑛/𝜖𝜖) iterations
 Each iteration runs in O(𝑘𝑘4𝑛𝑛4)

O(n)-approximation

A

B



• UCI datasets: Diabetes, Bank, Census

• Local Search reports a solution with
• Better cost than [JKL20] by a factor of 1.4, 2.25, and 1.93
• Worse fairness than [JKL20] by a factor of 1.13, 1.5, and 1.16

Empirical Evaluation

Dataset Dimension #Points

Diabetes 2 101,765

Bank 3 4,520

Census 5 32,560
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