Individual Fairness for k-Clustering

Sepideh Mahabadi TTIC Ali Vakilian University of Wisconsin-Madison

Fairness

Classic **Objective** in Algorithms

- Accuracy
- Runtime
- Space

Fairness

Classic **Objective** in Algorithms

- Accuracy
- Runtime
- Space

But, user interactions with algorithms have other implications

- Loans Approval
- Candidate for Job Interviews
- Candidate for Medical Treatments

Bias in Algorithms?

Notions of Fairness

Notions of Fairness

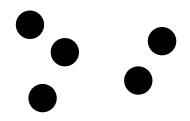
Group Fairness

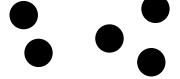
Notions of Fairness

Group Fairness

Individual Fairness

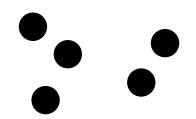
• **Clustering**: one of the most important unsupervised learning tasks

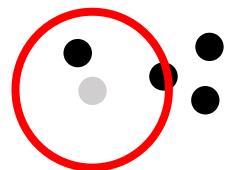




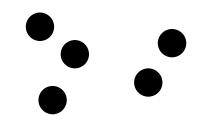
- **Clustering**: one of the most important unsupervised learning tasks
- Individual Fairness for Clustering

[Jung-Kannan-Lutz'20]





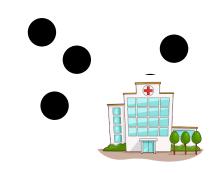
- **Clustering**: one of the most important unsupervised learning tasks
- Individual Fairness for Clustering [Jung-Kannan-Lutz'20]



Picking k centers,

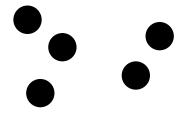
Each expects to see a center among its $\frac{n}{k}$ closest neighbors

- **Clustering**: one of the most important unsupervised learning tasks
- Individual Fairness for Clustering [Jung-Kannan-Lutz'20]

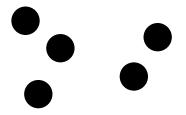


Picking k centers,

Each expects to see a center among its $\frac{n}{k}$ closest neighbors

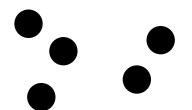


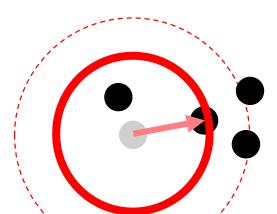
 \square Collection of n points in a metric space



 \square Collection of n points in a metric space

distance of v to its (n/k)-th closest neighbor

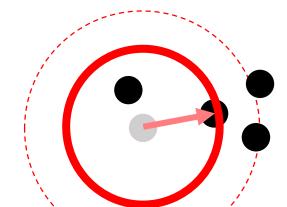




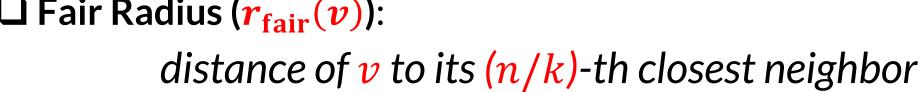
- \square Collection of n points in a metric space
- \square Fair Radius ($r_{\text{fair}}(v)$):

distance of v to its (n/k)-th closest neighbor

[JKL20] NP-hard to decide whether there exists a fair solution

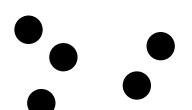


- \square Collection of n points in a metric space
- \square Fair Radius ($r_{\text{fair}}(v)$):



[JKL20] NP-hard to decide whether there exists a fair solution

 \square α -Fair k-Clustering: Find k centers s.t. each ν has a center in distance at most $\alpha \times$ its fair radius (i.e., $r_{\text{fair}}(v)$)



[Jung, Kannan, Lutz'20] introduces this notion of fairness

[Jung, Kannan, Lutz'20] introduces this notion of fairness

Finds a 2-fair solution

[Jung, Kannan, Lutz'20] introduces this notion of fairness

- Finds a 2-fair solution
 - \square Each v has a center in distance at most $2 \cdot r_{\text{fair}}(v)$

[Jung, Kannan, Lutz'20] introduces this notion of fairness

- Finds a 2-fair solution
 - \square Each ν has a center in distance at most $2 \cdot r_{\text{fair}}(\nu)$
 - □ In [Chan-Dinitz-Gupta'06] & [Charikar-Makarychev-Makarychev'10]

[Jung, Kannan, Lutz'20] introduces this notion of fairness

- Finds a 2-fair solution
 - \square Each ν has a center in distance at most $2 \cdot r_{\text{fair}}(\nu)$
 - ☐ In [Chan-Dinitz-Gupta'06] & [Charikar-Makarychev-Makarychev'10]

Only a fair solution, without optimizing the clustering cost

[Jung, Kannan, Lutz'20] introduces this notion of fairness

- Finds a 2-fair solution
 - \square Each ν has a center in distance at most $2 \cdot r_{\text{fair}}(\nu)$
 - ☐ In [Chan-Dinitz-Gupta'06] & [Charikar-Makarychev-Makarychev'10]

Only a fair solution, without optimizing the clustering cost

- k-median: total distance of points to their centers
- k-means: total squared distance of points to their centers
- k-center: maximum distance of any point to its center

Our Results

[This work] Local search returns (O(1),O(1)) approximation for α -fair k-median clustering.

Our Results

[This work] Local search returns (O(1),O(1)) approximation for α -fair k-median clustering. I.e., finds a set of k centers C s.t.

- C is $O(\alpha)$ -fair and
- cost of C is at most constant times the cost of an optimal α -fair solution

Our Results

[This work] Local search returns (O(1),O(1)) approximation for α -fair k-median clustering. I.e., finds a set of k centers C s.t.

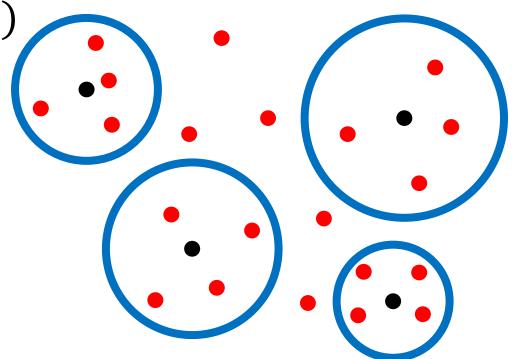
- C is $O(\alpha)$ -fair and
- cost of C is at most constant times the cost of an optimal α -fair solution

Our algorithm works for any ℓ_p -norm objective (e.g., k-means & k-center)

- **k-means:** $O(\alpha)$ -fair and cost is constant times the optimal α -fair k-means
- **k-center**: $O(\alpha)$ -fair and cost is $O(\log n)$ times the optimal α -fair k-center

<u>Step 1.</u> Find a set of **critical balls** of size $\ell \leq k$

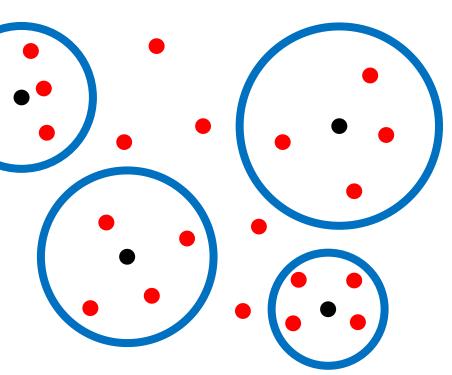
 $\pmb{B}(c_1, \alpha r_{\mathrm{fair}}(c_1)), \dots, \pmb{B}(c_k, \alpha r_{\mathrm{fair}}(c_\ell))$



<u>Step 1.</u> Find a set of **critical balls** of size $\ell \leq k$

 $\pmb{B}(c_1, \alpha r_{\mathrm{fair}}(c_1)), \dots, \pmb{B}(c_k, \alpha r_{\mathrm{fair}}(c_\ell))$

Lemma. Any set of k centers intersecting with critical balls is $O(\alpha)$ -fair.



<u>Step 1</u>. Find a set of **critical balls** of size $\ell \leq k$

Step 2. Run local search algorithm

<u>Step 1</u>. Find a set of **critical balls** of size $\ell \leq k$

<u>Step 2.</u> Run **local search** algorithm

Step 2-a. Find an initial (fair) solution

- <u>Step 1</u>. Find a set of **critical balls** of size $\ell \leq k$
- <u>Step 2.</u> Run **local search** algorithm

Step 2-a. Find an initial (fair) solution

- I. Pick the centers of critical balls
- II. In $k \ell$ remaining iterations
 - I. Pick the furthest point from the current set of centers

- <u>Step 1</u>. Find a set of **critical balls** of size $\ell \leq k$
- Step 2. Run local search algorithm

Step 2-a. Find an initial (fair) solution

- I. Pick the centers of critical balls
- II. In $k \ell$ remaining iterations
 - I. Pick the furthest point from the current set of centers

```
<u>Step 1</u>. Find a set of critical balls of size \ell \leq k
```

<u>Step 2.</u> Run **local search** algorithm

<u>Step 2-a.</u> Find an initial (fair) solution

Step 2-b. Local Update

```
<u>Step 1</u>. Find a set of critical balls of size \ell \leq k
```

Step 2. Run local search algorithm

Step 2-a. Find an initial (fair) solution

O(n)-approximation

Step 2-b. Local Update

Is there a swap of size at most t reducing cost by $(1+\epsilon)$?

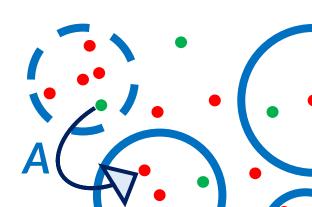
```
<u>Step 1</u>. Find a set of critical balls of size \ell \leq k
```

<u>Step 2.</u> Run **local search** algorithm

Step 2-a. Find an initial (fair) solution

Step 2-b. Local Update

Is there a swap of size at most t reducing cost by $(1+\epsilon)$?



```
<u>Step 1</u>. Find a set of critical balls of size \ell \leq k
```

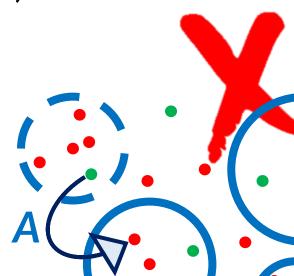
Step 2. Run local search algorithm

<u>Step 2-a.</u> Find an initial (fair) solution

Step 2-b. Local Update

Is there a swap of size at most t reducing cost by $(1+\epsilon)$?

Not all swaps are feasible



```
<u>Step 1</u>. Find a set of critical balls of size \ell \leq k
```

Step 2. Run local search algorithm

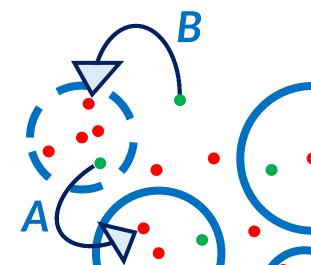
Step 2-a. Find an initial (fair) solution

O(n)-approximation

Step 2-b. Local Update

Is there a swap of size at most t reducing cost by $(1+\epsilon)$?

Not all swaps are feasible



```
<u>Step 1</u>. Find a set of critical balls of size \ell \leq k
```

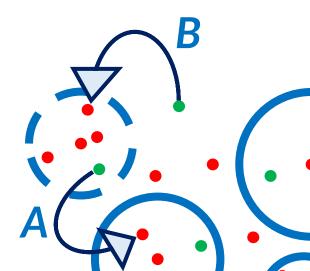
Step 2. Run local search algorithm

<u>Step 2-a.</u> Find an initial (fair) solution

Step 2-b. Local Update

Is there a swap of size at most t reducing cost by $(1+\epsilon)$?

• Not all swaps are feasible requires more complex analysis



```
<u>Step 1</u>. Find a set of critical balls of size \ell \leq k
```

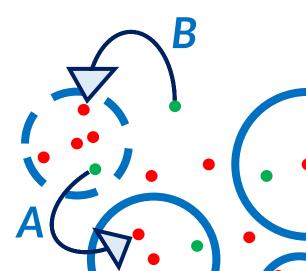
Step 2. Run local search algorithm

<u>Step 2-a.</u> Find an initial (fair) solution

Step 2-b. Local Update

Is there a swap of size at most t reducing cost by $(1+\epsilon)$?

- Not all swaps are feasible requires more complex analysis
- "valid" swaps of size at most four suffices



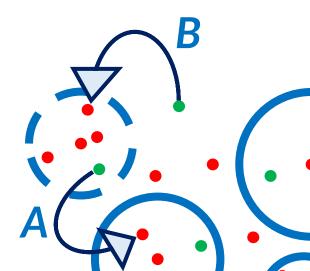
- <u>Step 1</u>. Find a set of **critical balls** of size $\ell \leq k$
- Step 2. Run local search algorithm

Step 2-a. Find an initial (fair) solution

Step 2-b. Local Update

Is there a swap of size at most t reducing cost by $(1+\epsilon)$?

- Not all swaps are feasible requires more complex analysis
- "valid" swaps of size at most four suffices
- \square The algorithm terminates after $O(\log n/\epsilon)$ iterations
- \square Each iteration runs in $O(k^4n^4)$



Empirical Evaluation

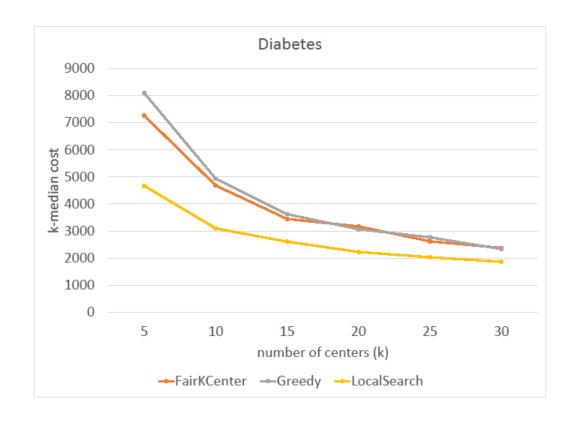
• UCI datasets: Diabetes, Bank, Census

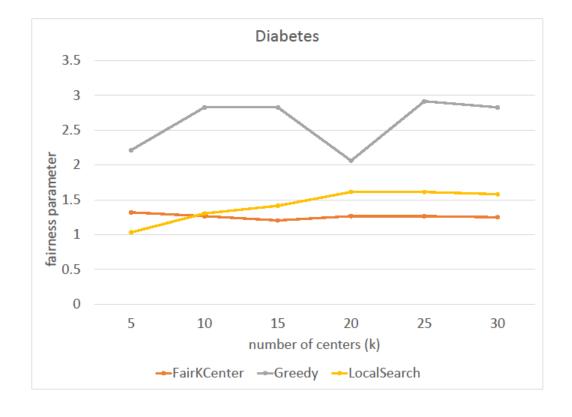
Dataset	Dimension	#Points
Diabetes	2	101,765
Bank	3	4,520
Census	5	32,560

- Local Search reports a solution with
 - Better cost than [JKL20] by a factor of 1.4, 2.25, and 1.93
 - Worse fairness than [JKL20] by a factor of 1.13, 1.5, and 1.16

Empirical Evaluation

• UCI datasets: Diabetes, Bank, Census





Future Directions

- Scalable algorithms w.r.t this notion of fairness?
- Better analysis of Local Search algorithm (with smaller swap sizes)?
- Constant-factor approximation for fair k-center problem?

Our result implies a (O(1), O(log n))-approximation algorithm

Future Directions

- Scalable algorithms w.r.t this notion of fairness?
- Better analysis of Local Search algorithm (with smaller swap sizes)?
- Constant-factor approximation for fair k-center problem?

Our result implies a (O(1), O(log n))-approximation algorithm

