
Adversarial Robustness
for Code

Pavol Bielik, Martin Vechev
pavol.bielik@inf.ethz.ch, martin.vechev@inf.ethz.ch

Department of Computer Science

1

ICML 2020

Adversarial Robustness

Vision + =

Explaining and Harnessing Adversarial Examples. Goodfellow et. al. ICLR’15

Sound noise+ =

Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. Carlini et. al. ICML’18 workshop

panda gibbon

2

Adversarial Robustness for Code

Vision

Sound noise

Code

+ =

+ =

code
refactoring+ =

panda gibbon

Explaining and Harnessing Adversarial Examples. Goodfellow et. al. ICLR’15

Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. Carlini et. al. ICML’18 workshop

3

 2019

Deep Learning + Code

Code Classification

 2018 2017 2016

Code Captioning

Type Inference

Variable NamingCode Completion Program Translation

Bug Detection Loop Invariants

Code Search Neural Decompilation

Accuracy

90%

Prior Works

Bug Repair

4

 2019

Adversarial Robustness for Code

Code Classification

 2018 2017 2016

Code Captioning

Type Inference

Variable NamingCode Completion Program Translation

Bug Detection Loop Invariants

Code Search Neural Decompilation

Robustness

?
Accuracy

90%

Prior Works

Bug Repair

5

 2019 2018 2017 2016

Adversarial Robustness for Code

Code Classification

Code Captioning Variable NamingCode Completion Program Translation

Bug Detection Loop Invariants

Code Search Neural Decompilation

Accuracy

90%
Robustness

4%-50%

Prior Works

Bug Repair

Type Inference

Accuracy

88%
Robustness

84%

This Work

6

Adversarial Robustness Example

...

v = parseInt(

 hex.substr(1),

 radix

)
...

Model
f(x) → y

Input Program
x

Goal (Adversarially Robustness):
Model is correct for all label preserving program transformations

Program Properties
y

...

vnum = parseIntnum(

 hexstr.substrstr(1),

 radixnum

)
...

(Type Inference)

7

...

v = parseInt(

 color.substr(1),

 radix

)

...

variable renaming

...

v = parseInt(

 hex.substr(42),

 radix

)

...

constant replacement

...

v = parseInt(

 hex.substr(1),

 radix + 0

)

...

semantic equivalence

...

parseInt(

 hex.substr(1),

 radix

)

...

remove assignment

Our Work: Three Key Techniques

...

v = parseInt(

 hexabs.substrabs(1),

 radixabs

)

...

Abstain1

8

Allows model
not to make
a prediction
if uncertain

Our Work: Three Key Techniques

...

v = parseInt(

 hexabs.substrabs(1),

 radixabs

)

...

Abstain1 Adversarial
Training

2

...

vnum = parseIntnum(

 color.substr(1),

 radix

)

...

𝛿 = hex → color

9

54%
robustness

54%
robustness

Our Work: Three Key Techniques

...

v = parseInt(

 hexabs.substrabs(1),

 radixabs

)

...

Abstain1 Adversarial
Training

2

...

vnum = parseIntnum(

 color.substr(1),

 radix

)

...

𝛿 = hex → color 𝛼(x + 𝛿) parseIntnum(

 _,

 _

)

Representation
Learning

3

10

Our Work: Three Key Techniques

...

v = parseInt(

 hexabs.substrabs(1),

 radixabs

)

...

Abstain1 Adversarial
Training

2

...

vnum = parseIntnum(

 color.substr(1),

 radix

)

...

𝛿 = hex → color 𝛼(x + 𝛿) parseIntnum(

 _,

 _

)

Representation
Learning

3

11

84%
robustness

Our Work: Three Key Techniques

...

v = parseIntnum(

 hexabs.substrabs(1),

 radixabs

)

...

Abstain1 Adversarial
Training

2

...

vnum = parseIntnum(

 color.substr(1),

 radix

)

...

𝛿 = hex → color 𝛼(x + 𝛿) parseIntnum(

 _,

 _

)

Representation
Learning

3

4 Refinement

12

Learning to Abstain

Leads to a simpler
optimization problem

Property prediction
problem is undecidable

Predict Class

Abstains

Model should be both
Robust and Accurate

Model should be
only Robust

= +

abstain

y1 y2

input xi

13

Learning to Abstain

Predict Class

Model should be both
Robust and Accurate

= +

abstain

input xi

Combine Robustness + Learning to AbstainMain Insight

Deep Gamblers: Learning to Abstain with Portfolio Theory.
Liu et. al. NeurIPS’19

How to Abstain?

14

Leads to a simpler
optimization problem

Property prediction
problem is undecidable

Our Work: Three Key Techniques

...

v = parseIntnum(

 hexabs.substrabs(1),

 radixabs

)

...

Learned Jointly

Abstain1 Adversarial
Training

2

...

vnum = parseIntnum(

 color.substr(1),

 radix

)

...

𝛿 = hex → color 𝛼(x + 𝛿) parseIntnum(

 _,

 _

)

Representation
Learning

3

4 Refinement

abstain

y1 y2

15

Adversarial Training

min loss(𝜃, x, y)Standard training

measures the model performance ground-truth label

min [max loss(𝜃, x + 𝛿, y)]
 𝛿 ∊ S(x)

Adversarial training

Solve the inner
max loss efficiently

Define the space S of
program transformations

1 2

Label preserving program transformations

16

Label Preserving Program Transformations
Word Substitution Constants, Binary Operators, ...

7

radix + offset

42

radix - offset

x + 𝛿

Word Renaming Rename Variables, Parameters, Fields, Method Names, ...

def getID() {...}

client.Name

def get_id() {...}

client.name

x + 𝛿

Sequence Substitution Adding Dead Code, Reordering Statements, ...

a = get_id()

b = 42

b = 42

a = get_id()

x + 𝛿

tensors + 𝛿
very fast

tensors + 𝛿 + analysis
fast

tensors→code + 𝛿 + analysis→tensors
slow

17

Adversarial Training

min loss(𝜃, x, y)Standard training

measures the model performance ground-truth label

min [max loss(𝜃, x + 𝛿, y)]
 𝛿 ∊ S(x)

Adversarial training

Label preserving program transformations

Solve the inner
max loss efficiently

Define the space S of
program transformations

1 2

18

Solving the Inner max loss Efficiently

Adversarial Examples for Models of Code.
Yefet et. al. ArXiv’20

Gradient Based Optimization

x + 𝛿

𝜃 ← 𝜃 - ∇ loss(𝜃, x + 𝛿, y)
 𝛿 ∊ S(x)

S(x)

decision
boundary

no structural transformations

Discrete and
disruptive changes

Highly structured
and large programs

hard optimization problem

Limitations

same or worse robustness

standard
54%

adversarial
54%

19

Solving the Inner max loss Efficiently
Gradient Based Optimization

x + 𝛿

𝜃 ← 𝜃 - ∇ loss(𝜃, x + 𝛿, y)
 𝛿 ∊ S(x)

S(x)

min [max loss(𝜃, x + 𝛿, y)]
 𝛿 ∊ S(𝛼(x))

S(𝛼(x))

Refine S

...

v = parseInt(

 color.substr(1),

 radix

)

...

parseInt(

 _,

 _

)

learned
representation

20

Solving the Inner max loss Efficiently
Gradient Based Optimization

x + 𝛿

𝜃 ← 𝜃 - ∇ loss(𝜃, x + 𝛿, y)
 𝛿 ∊ S(x)

S(x)

min [max loss(𝜃, x + 𝛿, y)]
 𝛿 ∊ S(𝛼(x))

S(𝛼(x))

Refine S

...

v = parseInt(

 color.substr(1),

 radix

)

...

parseInt(

 _,

 _

)

reduces the search space

leads to an easier optimization

21

Solving the Inner max loss Efficiently
Gradient Based Optimization

x + 𝛿

𝜃 ← 𝜃 - ∇ loss(𝜃, x + 𝛿, y)
 𝛿 ∊ S(x)

S(x)

min [max loss(𝜃, x + 𝛿, y)]
 𝛿 ∊ S(𝛼(x))

S(𝛼(x))

Refine S

...

v = parseInt(

 color.substr(1),

 radix

)

...

parseInt(

 _,

 _

)

reduces the search space

leads to an easier optimization

orthogonal to gradient optimization

supports all transformations

22

Our Work: Three Key Techniques

...

v = parseIntnum(

 hexabs.substrabs(1),

 radixabs

)

...

Learned Jointly

Abstain1 Adversarial
Training

2

...

vnum = parseIntnum(

 color.substr(1),

 radix

)

...

𝛿 = hex → color 𝛼(x + 𝛿) parseIntnum(

 _,

 _

)

Representation
Learning

3

4 Refinement

abstain

y1 y2

23

Representation Learning

Programs as Graphs1
Learning to Represent Programs with Graphs.

Allamanis et. al. ICLR’18

Generative Code Modeling with Graphs.
Brockschmidt et. al. ICLR’19

+

x 7

=

v

v = x + 7

G =〈V, E, 𝜉〉
nodes

edges

attributes

Define Refinement2

𝛼:
〈V, E, 𝜉〉→〈V, E’ ⊆ E, 𝜉〉

+

x 7

=

v

Remove Graph Edges

24

Representation Learning

Programs as Graphs1
Learning to Represent Programs with Graphs.

Allamanis et. al. ICLR’18

Generative Code Modeling with Graphs.
Brockschmidt et. al. ICLR’19

Define Refinement2

+

x 7

=

v

v = x + 7

G =〈V, E, 𝜉〉
nodes

edges

attributes 𝛼:
〈V, E, 𝜉〉→〈V, E’ ⊆ E, 𝜉〉

+

x 7

=

v

Remove Graph Edges

All decisions
are made locally

25

Representation Learning

Programs as Graphs1
Learning to Represent Programs with Graphs.

Allamanis et. al. ICLR’18

Generative Code Modeling with Graphs.
Brockschmidt et. al. ICLR’19

Define Refinement2 Optimize 𝛼3

+

x 7

=

v

v = x + 7

G =〈V, E, 𝜉〉
nodes

edges

attributes 𝛼:
〈V, E, 𝜉〉→〈V, E’ ⊆ E, 𝜉〉

+

x 7

=

v

Remove Graph Edges Minimize Graph Size

arg min ∑ |𝛼(x)|
 𝛼 (x, y) ∈

subject to
loss(𝜃, x, y) ≈ loss(𝜃, 𝛼(x), y)

26

Our Work: Three Key Techniques

...

v = parseIntnum(

 hexabs.substrabs(1),

 radixabs

)

...

Learned Jointly

Abstain1 Adversarial
Training

2

...

vnum = parseIntnum(

 color.substr(1),

 radix

)

...

𝛿 = hex → color 𝛼(x + 𝛿) parseIntnum(

 _,

 _

)

Representation
Learning

3

4 Refinement

abstain

y1 y2

27

Evaluation

vnum = parseIntnum(

 hexstr.substrstr(1),

 radixnum

)

Type Inference
string, number,
boolean, void

()⇒string, ()⇒number,
()⇒boolean, ()⇒void

any

target classes (y)

JavaScript

28

Task

Typilus: Neural Type Hints. Allamanis et. al. PLDI’20

LambdaNet: Probabilistic Type Inference using Graph Neural Networks. Wei et. al. ICLR’20
more complex
type inference

Models LSTM DeepTyper Graph Neural Networks

GNNTransformer GNNGCN GNNGGNNLSTM + 1 layer GNN + LSTM
DeepTyper: Deep Learning Type Inference.

Hellendoorn et. al., FSE’18

Our Work: Three Key Techniques

4 Refinement

Abstain Representation
Learning

1st Model 2nd Model 3rd Model

29

Evaluation
Accuracy Robustness

Standard Training 89.3% 54.9%

90.3% 54.3%

83.8%88.4%

Adversarial Training

All Components

GNNTransformer

30

Robustness

+29%
Accuracy

-1%

Evaluation
Accuracy Robustness

Standard Training 89.3% 54.9%

90.3% 54.3%

83.8%88.4%

Adversarial Training

All Components

GNNTransformer

0%

 99%

 100%

Target
Accuracy

All Components

All Components

99.6%

99.9%

99.0%

99.9%

61.3%

75.9%

Abstain

-

-

-

31

Allows training highly accurate & robust models

Adversarial Robustness for Code
...

v = parseInt(

 hex.substr(1),

 radix

)

...

Abstain1 Adversarial
Training

2

...

v = parseInt(

 color.substr(1),

 radix

)

...

𝛿 = hex → color 𝛼(x + 𝛿) parseInt(

 _,

 _

)

Representation
Learning

3

32

4 Refinement

For more experiments and results, please refer to the extended version of our paper

We only scratched the surface, more work in domain of code is needed and is being done, e.g.:

Adversarial Examples for Models of Code. Yefet et. al. ArXiv
Optimization-guided binary diversification to mislead neural networks for malware detection. Sharif et. al. ArXiv
Semantic Robustness of Models of Source Code. Ramakrishnan et. al., ArXiv

