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Adversarial Attacks
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Figure: Imperceptible adversarial perturbations in £;. [5]
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Adversarial Robustness
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Figure: A sparse perturbation. [1]

Overarching Goal: Train classifiers robust to adversarial
perturbations.

» Examples in many areas of applications.

» Different possible forms of perturbations: changing every pixel
in an image vs. placing a sticker on a stop sign.

» Can we derive learning guarantees for adversarial robustness?
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Outline of Talk

Goal of our paper: Understand what characterizes robust
generalization and how it relates to non-robust generalization

1. Classification & Adversarial Classification setup

2. Rademacher complexity & Adversarial Rademacher
Complexity

3. Better bounds for adversarial Rademacher complexity of linear
classes

4. Better bounds for Rademacher complexity of linear classes

5. Adversarial Rademacher complexity of neural nets
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Standard Classification Setting

Binary Classification: Data distributed over RY x {—1,+1}
according to D
Standard Setting;:

» Given a predictor h: RY — R, a point x is classified as
sign(h(x)).

» There is an error if yh(x) <0, or 1,440 = 1.

» The classification error is then

R(hy= E [1
(W= E [l
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Defining Adversarial Perturbations

Adversarial Setting:

» The data is perturbed by € in ¢, to
“fool” the classifier into thinking there is
an error, now an error occurs if

£ ball of
1= sup 1yh(x’)<0 = 1inf|lX*X’|lr<é yh(x')<0 radius &
[|[x—x]|-<e - around x
r"—'- AN
» The adversarial classification error is then -nmon
o oo

ﬁ(h) . , not roobli’st“,

(g i< i) <o) °
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Rademacher Complexity
The empirical Rademacher complexity is

Rs(F) = sup—Za,

g feFm

p—Margm Loss:

®,(u) = min(1, max(0,1 — %))
Theorem (Margin Bounds [4])

——zero-one loss
1 - - -p-margin loss|{
\
\

>IN

~ 2 log
R(h) < Rs ,(h)+—
() < Rs (W) 9s(F) 3 5

Loss

holds with probability at least
1—6 forall he F. \
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Adversarial Rademacher Complexity

Theorem (Robust margin bounds)
Define the class F by

F={(x,y)— inf yf(X): feF}.

l[x=x[[r<e

The following holds with probability at least 1 — § for all h € F:
R(h) < Rs,(h) + “Rs(F) +3 g §
( ) = S,p( + P S + om
Definition

We define the adversarial Rademacher Complexity as

Rs(F) = Rs(F)
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Prior Work on Adversarial Rademacher Complexity of
Linear Classes

= {x = (w, %) |w, < W}

Yin et. al. [6]: For perturbations in the infinity norm, for some
constant ¢

1

de*
Vi m

Khim and Loh [3]: For perturbation in the r-norm, there exists a
constant M, for which

max(Rs(Fp), ceW

) < Rs(Fp) < Rs(Fp) +eW

W r*
Rs(Fo) < —— ;
s(F2) < T max il ey
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Adversarial Rademacher Complexity of Linear Classes

Fp = {x = {w,x): [w, < W}

Theorem

Lete >0, r > 1. Consider a sample S = {(x1,y1), -+, (Xm,¥Ym)}

with x; € R? and y; € {41} and perturbations in the r-norm.
Then

1 1
Wmax(dl_'_P,l)) ~
max | Rs(Fb), < Rs(F
X< S( P) € zm S( P)
w
2/ m
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Rademacher Complexity of Linear Classes

Fp={x= (w,x): [|w], < W}

=[x1...Xm]
Group norms: [|A|[pq = [[([[A1llp- - [|Amllp)llq where A; is the ith
row of A.
Prior Work [2]:

2log(2d) P

9%5(]-",,) < {‘CVV m ||X||max |f p 1
VP = 1[X][p 2 ifl<p<2

Our new bounds:

W, /2log(2d |yxTH2,, if p=1

+1
Rs(Fp) < { V2W {”ﬁ)} * IXT||l2pe if1<p<2

m

wIXTl2,pr if p=2

11/17



Comparing the Bounds for 1 < p < 2

%WHX p* .2 old bound
Rs(Fp) < P
P @ [r(\fi)} g [XT|l2,p+ new bound

Comparing the Norms: If p <2, then

1_ 1
2 p*

T T
X l2pr 2 [IXlpr2 = [[X7 2,7

e
s Gy

min(m, d)

o

b o

Comparing the Constants:

a(p) =vp—1

r(%)}i

N
IS

o

Constants

¥

o

B
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Adversarial Rademacher Complexity of the RelLU
Gp ={(x,y) = (y(w, x)) 4 wll, < W,y € {-1,1}}
Fp={x= (w,x): [w], < W}

Theorem
The adversarial Rademacher complexity of G, can be bounded as
follows:

_1_1 ~
| es*|max(d1 P r71) S%S(gp)

\f
< iRTE(]:;J) +€

1—

Sle
T =

max(1, d )s

w
2v/m
where

Te={ityi=—1or,yi=1and x|, > €}
={i: (s,x;) — (1 + 0yi)yi

and s* is the adversarial perturbation.
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Adversarial Rademacher Complexity of Neural Nets

Gp = {(x,)/) — yz uip(wj - x): [Jull1 <A, ||wjl|, < W}.

j=1

Theorem

Let p be a function with Lipschitz constant L, with p(0) = 0.
Then, the following upper bound holds for the adversarial
Rademacher complexity of G :

\/ﬁ
(1 +/d(n+1) |og(36)) .

1 1
~ WA max(L, d* 7 )([IX] 00 +
ms(gmg,,[ ( )(IX .o ﬂx
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Towards Dimension Independent Bounds

» Studying the structure of adversarial perturbations leads to
equations qualitatively similar to y-fat shattering.

» Under appropriate assumptions, this can lead to dimension
independent bounds.
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Conclusion

We covered
» New bounds for Rademacher complexity of linear classes.

» New bounds for adversarial Rademacher complexity of linear
classes.

» New bounds for adversarial Rademacher complexity of Neural
nets.

Open problems

» Generalize to arbitrary norms: in general is the dual norm a
good regularizer?

» Improve the adversarial neural nets generalization bound or
find a matching lower bound.
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