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Undiscounted RL: MDP Model

We consider reinforcement learning (RL), where the environment is
modeled as an undiscounted Markov Decision Process (MDP).

Undiscounted MDP ) = (S, A, p, j1):

® State-space S with cardinality S

e Action-space A with cardinality A

® Transition function p: Selecting a € A in s € S leads to a transition
to s with probability p(s'|s, a).

e Reward function p: Selecting a € A in s € S gives r(s,a) with mean
p(s, a).
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Undiscounted RL: MDP Model

— Agent —
reward r,
action a,
state 4,
sm~P(.Isp @) L Epvironment — «~—

p and p are unknown, and the goal is to maximize Z;‘le Tt.

We consider communicating (or finite-diameter) MDPs

® Diameter (Jaksch et al., 2010): Captures the maximal shortest-path
between any pair of states.
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Undiscounted RL: Regret

Regret: The difference between the cumulative reward of an optimal
policy * and that gathered by the learner:

T
R(T):=Tg" — Zrt
t=1

where g* is the average-reward (gain) of an optimal policy.
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Undiscounted RL: Regret

Regret: The difference between the cumulative reward of an optimal
policy * and that gathered by the learner:

T
R(T):=Tg" — Zrt
t=1

where g* is the average-reward (gain) of an optimal policy.
Alternatively, the objective of the learner is to minimize the regret.

The key difficulty to do so is to balance exploration vs. exploitation:
® Play the best action so far, ...

® .. or rather explore a different action?
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@ Background: UCRL2

Slide 6 — Sadegh Talebi — Tightening Exploration in Upper Confidence RL —



UNIVERSITY OF COPENHAGEN

Notations

Under a given algorithm, we define:

® Ni(s,a): number of visits, up to time ¢, to (s, a).

® Ni(s,a,s'): number of visits, up to time ¢, to (s, a) followed by a
visit to s’

® Empirical estimates of transition probabilities and rewards:

fir(s,a) = Yo resy = s,ap = a}
max{/Vy(s,a),1}
. Ni(s,a,s)
/ _ y Wy
Bils']s, a) = max{N;(s,a), 1}
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UCRL2

UCRL2 (Jaksch et al., 2010): A model-based algorithm for undiscounted
RL implementing the principle of optimism in the face of uncertainty.

¢ Mainstains a set of plausible MDPs (models) by defining
high-probability confidence sets for i and p

e Chooses an optimistic model (among models) and an optimistic
policy leading to the highest average-reward.
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UCRL2

UCRL2 (Jaksch et al., 2010): A model-based algorithm for undiscounted
RL implementing the principle of optimism in the face of uncertainty.

At time ¢, UCRL2 considers the set M, ;5 of candidate MDPs
M = (S, A, 1/, p) satisfying: For all s,aq,

[Bi(-]5,0) = P'(¢]s, a)|], < \/% tog (QTAt)

N , 7 2S5 At
— < [ — -

Slide 9 — Sadegh Talebi — Tightening Exploration in Upper Confidence RL —



UNIVERSITY OF COPENHAGEN

UCRL2

UCRL2 (Jaksch et al., 2010): A model-based algorithm for undiscounted
RL implementing the principle of optimism in the face of uncertainty.

At time ¢, UCRL2 considers the set M, ;5 of candidate MDPs
M = (S, A, 1/, p) satisfying: For all s,aq,

[Bi(-]5,0) = P'(¢]s, a)|], < \/% tog (QTAt)

. , 7 2S5 At
_ < ) -

—> With probability, M € M, ;.
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UCRL2

UCRL2 (Jaksch et al., 2010): A model-based algorithm for undiscounted
RL implementing the principle of optimism in the face of uncertainty.

® For any communicating MDP with S states, A actions, and diameter
D, UCRL2 satisfies

R(T) < 34DS\/ AT log(T/§) w.p. at least 1 — 6.
e Minimax lower bound (Jaksch et al., 2010): Q(v/DSAT)
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UCRL2

UCRL2 (Jaksch et al., 2010): A model-based algorithm for undiscounted
RL implementing the principle of optimism in the face of uncertainty.

® For any communicating MDP with S states, A actions, and diameter
D, UCRL2 satisfies

R(T) < 34DS\/ AT log(T/§) w.p. at least 1 — 6.
e Minimax lower bound (Jaksch et al., 2010): Q(v/DSAT)

UCRL2 and its variants do not perform epmirically well despite their
strong regret guarantees.
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® UCRL3

Slide 11 — Sadegh Talebi — Tightening Exploration in Upper Confidence RL —



UNIVERSITY OF COPENHAGEN

UCRL3

Our main contribution is UCRL3, a new algorithm for average-reward
RL.

UCRL3 is a variant of UCRL2, combining the following key elements:
® Tight and element-wise confidence intervals for transition function p

® [ntersection of time-uniform Bernstein and sub-Gaussian Bernoulli
concentration for each p(s'|s, a)

® A modified planning algorithm, called EVI-NOSS, to compute a
near-optimistic policy.
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UCRL3

Our main contribution is UCRL3, a new algorithm for average-reward
RL.

UCRL3 is a variant of UCRL2, combining the following key elements:

® Tight and element-wise confidence intervals for transition function p

® [ntersection of time-uniform Bernstein and sub-Gaussian Bernoulli
concentration for each p(s'|s, a)

® A modified planning algorithm, called EVI-NOSS, to compute a
near-optimistic policy.

To simplify the presentation, we assume that u is known.
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UCRL3: Confidence Set for p

For each pair (s,a), define

Cis(s,a) := {q € As: q(s) € Cly(s,a,8") N CFs(s,a,s") for all s’}
Ber;gtein sub-G;,ussian
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UCRL3: Confidence Set for p

For each pair (s,a), define

Cis(s,a) := {q € As: q(s) € Cly(s,a,8") N CFs(s,a,s") for all s’}

VvV v
Bernstein sub-Gaussian

° tl,é(s,a, s') is defined using Bernstein's concentration modified using
a peeling technique.

° Zé(s,a, s') is obtained by leveraging sub-Gaussianity of Bernoulli
distributions combined with the method of mixtures.
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UCRL3: Confidence Set for p

For each pair (s,a), define

Cis(s,a) := {q € As: q(s') € Cls(s,a,s") N C75(s,a,s") for all s’}
Ber;gtein sub—G;TJssian
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UCRL3: Confidence Set for p

For each pair (s,a), define

Cis(s,a) := {q € As: q(s') € Cls(s,a,s") N C75(s,a,s") for all s’}
Ber;gtein sub—G;TJssian

_ 201 = Nn,s,0) (5577) | Vuts.0) (58%2)
1 / — . / _ < t(s,a)\ 252 A t(s,a)\ 2524
NESES {)\ Ipels'ls ) = Al < \/ Ny(s,a) + 3N;(s,a)

where £,,(6) = nlog (%) with n > 1 (an arbitrary choice).
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UCRL3: Confidence Set for p

For each pair (s,a), define

Cis(s,a) := {q € As: q(s') € Cls(s,a,5") N C75(s,a,s") for all s’}

Bernstein sub-Gaussian
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UCRL3: Confidence Set for p

For each pair (s,a), define

Cis(s,a) := {q € As: q(s') € Cls(s,a,5") N C75(s,a,s") for all s’}

Bernstein sub-Gaussian

Caalsans') = {3 - /a0 < IS < /5

N (sa) ( LA)

_ g(A if A<0.5
where g(A) = logl(/lzTil) and g(A)= {/\((1)—)\) else » and

E O, n
B, (6) = \/2(1+n)1 i(\f +1/6)
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UCRL3: Set of Models

At time ¢, UCRL3 considers the set M, s of plausible MDPs:

Mt,<5 = {M, = (Sa Aa p,a:u’) : p/('|37 (I) € Ct,5(s7 (l) for all (S’ (l)}
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UCRL3: Set of Models

At time ¢, UCRL3 considers the set M, s of plausible MDPs:

Mt,J = {M, = (Sa A: p,nu) : p/('lsa (l) € Ct,5<s7 a) for all (87 (I)}

Lemma (Time-uniform confidence bounds)

For any MDP M with transition function p, for all 6 € (0,1), it holds

P(3t € N,M ¢ M,s) < 4.
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UCRL3: Revisiting EVI

® To compute an optimistic policy (i.e., planning) in UCRL2 is done by
EVI as a subroutine, which involves solving

max{Zp :p € Cro(s, a)}
€S
where u,, is a value function (at iteration n of EVI)

® EVI outputs a conservative policy (hence introducing unnecessary
exploration), in particular when transition function p has a sparse
support.

® UCRL3 remedies this issue by combining EVI with an adaptive
support selection procedure.
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UCRL3: Revisiting EVI

More specifically, at each iteration n of EVI:

® We first compute §57a C &8, an approximation of the support of
p(-|s, a), using NOSS (Algorithm 2 in the paper).
® Then, we solve

max { Zp :p € Cis(s,a) and supp(p') = gs,a}

€S

This combined algorithm is called EVI-NOSS and outputs a
near-optimistic policy.

For the complete pseudo-code of UCRL3, we refer to the paper.
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© Regret Analysis
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UCRL3: Local Diameter

Definition (Local Diameter of State s)

Consider state s € S. For s1, S5 € UgeaSupp (p(-|s, a)) with s1 # s,
let T™(s1, s9) denote the number of steps it takes to get to s, starting
from s; and following policy 7. Then, the local diameter of MDP M
for s is defined as

D, = max min E[T7™(sq, s2)].
s1,52€Uqsupp(p(-|s,a)) 7

e D, refines the (global) diameter (Jaksch et al., 2010).
® Forall s, D, < D, and for some states D, < D.
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UCRL3: Regret

Theorem (Regret of UCRL3)

With probability higher than 1 — 6, uniformly over all T' > 3, the regret
under UCRL3 satisfies:

R(T) < O([\/ > max(D2La, 1) + D]/ TIo8(T/9) ),

where L, := (Y, cs \/p(x|s, a)(1 — p(z|s, a)))2 denotes the local
effective support of (s,a).
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UCRL3: Regret

Theorem (Regret of UCRL3)

With probability higher than 1 — 6, uniformly over all T' > 3, the regret
under UCRL3 satisfies:

R(T) < O([\/ > max(D2La, 1) + D]/ TIo8(T/9) ),

where L, := (Y, cs \/p(cc|s, a)(1 — p(z|s, a)))2 denotes the local
effective support of (s,a).

Note that L,, < K,, — 1 (with K, := [supp(p(-|s,a))|). Hence,

N(T) < (5( [\/ > max(DIK., 1) + D] \/T)
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State-of-the-Art Regret Bounds

Algorithm Regret bound
UCRL2 (Jaksch et al., 2010) (’)(DS\/W(TM))
KL-UCRL (Filippi et al., 2010) O(Ds\/ATlog(log(T)/a))
KL-UCRL (Talebi et al., 2018) O([D /S, max(Vea, 1] /T log(log(T) /5))
SCAL™ (Qian et al., 2019) O(D\/Em KT 1og(T/5))
UCRL2B (Fruit et al., 2019) 0(\/[) Y KaT log(T) log(1/9))
UCRL3 (This Paper) 0((1) /.0 max(D2Lea, 1) Tlog(T/(S))

Lower Bound (Jaksch et al., 2010) Q(VDSAT)
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O Numerical Experiments
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Numerical Experiments
UCRL3 vs. existing algorithms in RiverSwim: L=6 (left) vs. L =25 (right)
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Numerical Experiments

UCRL3 vs. existing algorithms in a 100-state randomly generated MDP
using Garnet (Bhatnagar et al., 2009)
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® Conclusion
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Conclusions and Future Work

We introduced UCRL3 for average-reward RL in communicating MDPs:

® A novel variant of UCRL2 using (i) tight and time-uniform confidence
sets, and (ii) a novel approach for planning.

® Beats all existing variants of UCRL2 in practice yet enjoying a better
regret bound.

Future Work:

® Closing the gap between upper and lower bounds

® Problem-dependent regret lower and upper bounds for
average-reward RL
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