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Motivation: Likelihood in Studying Complex Phenomena

However, for some complex phenomena in the science and engineering, an
explicit likelihood function might not be available.
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Likelihood-Free Inference

1 True likelihood cannot be evaluated
2 Samples can be generated for fixed settings of θ, so the likelihood is

implicitly defined

Inference on parameters θ in this setting is known as likelihood-free
inference (LFI).
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Likelihood-Free Inference Literature

Approximate Bayesian computation1

More recent developments:
I Direct posterior estimation (bypassing the likelihood)2

I Likelihood estimation3

I Likelihood ratio estimation4

Hypothesis testing and confidence sets can be considered cornerstones of
classical statistics, but have not received much attention in LFI.

1Beaumont et al. 2002, Marin et al. 2012, Sisson et al. 2018
2Marin et al., 2016; Izbicki et al., 2019; Greenberg et al., 2019
3Thomas et al., 2016; Price et al., 2018; Ong et al., 2018; Lueckmann et al., 2019;

Papamakarios et al., 2019
4Izbicki et al., 2014; Cranmer et al., 2015; Frate et al., 2016
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A Frequentist Approach to LFI

Our goal is to develop:
1 valid hypothesis testing procedures
2 confidence intervals with the correct coverage

Main Challenges:
Dealing with high-dimensional and different types of simulated data
Computational efficiency
Assessing validity and coverage
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Hypothesis Testing and Confidence Sets

Key ingredients:
data D = {X1, ...,Xn}
a test statistic, such as likelihood ratio statistic Λ(D; θ0)
an α-level critical value Cθ0,α

Reject the null hypothesis H0 if Λ(D; θ0) < Cθ0,α

Theorem (Neyman inversion, 1937)
Building a 1− α confidence set for θ is equivalent to testing

H0 : θ = θ0 vs. HA : θ 6= θ0

for θ0 across the parameter space.
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Approximate Computation via Odds Ratio Estimation

Key Realization:
1 Likelihood ratio statistic log Λ(D; Θ0),
2 Critical value of the test Cθ0,α,
3 Coverage of the confidence sets

Are conditional distribution functions which often vary smoothly as a
function of the (unknown) parameters of interest θ.

Rather than relying solely on samples at fixed parameter settings (standard
Monte Carlo solutions), we can interpolate across the parameter space

with ML models.
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Likelihood Ratio Statistic (I)

1 Forward simulator Fθ
I Identifiable model, i.e. Fθ1 6= Fθ2 for θ1 6= θ2 ∈ Θ

2 Proposal distribution for the parameters r(θ) over Θ

3 Reference distribution G over the data space X
I Does not depend on θ
I G needs to be a dominating measure of Fθ for every θ

F OK if G = Fθ for one specific θ ∈ Θ

Train a probabilistic classifier m to discriminate samples from G (Y = 0)
between samples from Fθ (Y = 1) given θ.

m : (θ,x) −→ P(Y = 1|x, θ) =⇒ O(θ0; x) = P(Y = 1|x, θ)
P(Y = 0|x, θ) = Fθ(x)

G(x)
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Likelihood Ratio Statistic (II)

logOR(x; θ0, θ1) = log O(θ0;x)
O(θ1;x) (log-odds ratio)

Suppose we want to test:

H0 : θ ∈ Θ0 vs H1 : θ 6∈ Θ0

We define the test statistics:

τ(D; Θ0) := sup
θ0∈Θ0

inf
θ1∈Θ

n∑
i=1

log
(
ÔR(Xobs

i ; θ0, θ1)
)

Theorem (Fisher’s Consistency)

If P̂(Y = 1|θ,x) = P(Y = 1|θ,x) ∀θ,x =⇒ τ(D; Θ0) = log Λ(D; Θ0)
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Likelihood Ratio Statistic (III)

Suppose we want to test:

H0 : θ ∈ Θ0 vs H1 : θ 6∈ Θ0

We define the test statistics:

τ(D; Θ0) := sup
θ0∈Θ0

inf
θ1∈Θ

n∑
i=1

log
(
ÔR(Xobs

i ; θ0, θ1)
)

By fitting a classifier m we can:
estimate ÔR(x; θ0, θ1) for all x, θ0, θ1,
leverage ML probabilistic classifier to deal with high-dimensional x,
use loss-function as relative comparison of which classifier performs
best among a set of classifiers.
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Determine Critical Values Cθ0,α

We reject the null hypothesis when τ(D; Θ0) ≤ Cθ0,α, where Cθ0,α is
chosen so that the test has a size α.

Cθ0,α = arg sup
C∈R

{
C : sup

θ0∈Θ0

P (τ(D; Θ0) < Cθ0 | θ0) ≤ α
}
,

Problem: Need to estimate P (τ(D; Θ0) < Cθ0 | θ0) over any θ ∈ Θ.

Solution: P(τ(D; Θ0) < Cθ0 |θ0) is a (conditional) CDF, so we can
estimate its α quantile via quantile regression.
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Assessing Confidence Set Coverage

Set Coverage: E[I(θ0 ∈ R(D))] = P (θ0 ∈ R(D)) ≥ 1− α

Marginal Coverage 7

Build R for different θ1
0, ..., θ

n
0 and check overall coverage

Estimate Via Regression X
Run ACORE for different θ1

0, ..., θ
n
0 and estimate coverage:

{θi0, R(Di)}ni=1 −→ learn E[I(θ0 ∈ R(D))]

We can check that 1− α is within prediction interval for each θ0
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ACORE Relies on 5 Key Components
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A Practical Strategy

To apply ACORE, we need to choose five key components:
a reference distribution G
a probabilistic classifier
a training sample size B for learning odds ratios
a quantile regression algorithm
a training sample size B′ for estimating critical values

Empirical Strategy:
1 Use prior knowledge or marginal distribution of a separate simulated

sample to build G;
2 Use the cross entropy loss to select the classifier and B;
3 Use the goodness-of-fit procedure to select the quantile regression

method and B′ .
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Also included in our work

1 Theoretical results

2 Toy examples to showcase ACORE in situations where the true
likelihood is known

3 Signal detection example inspired by the particle physics literature

4 Comparison with existing methods

5 Open source Python implementation5

I based on numpy, sklearn and PyTorch

5Github: Mr8ND/ACORE-LFI
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https://github.com/Mr8ND/ACORE-LFI


THANKS FOR WATCHING!
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