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Stochastic optimization

Stochastic optimization problem:

minimize f(z) := Ep[f(z;9)] = /Sf(z, s)dP(s)

zEX
Stochastic gradient descent (SGD):
Tt1 = Tk — Gk, gk € Of (zx, Sk)
SGD with momentum:
Tht1 = T — Qg 2k, 241 = Brgr1 + (1 — Br)zk

Includes Polyak's Heavy ball, Nesterov's fast gradient, and more
e widespread empirical success

e theory less clear than deterministic counterpart
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Stochastic optimization: sample complexity

For SGD, sample complexity is known under various assumptions

® convexity [Nemirovski et al., 2009]
¢ smoothness [Ghadimi-Lan, 2013]
e weak convexity [Davis-Drusvyatskiy, 2019]

Much less is known for momentum-based methods
e constrained

® non-smooth non-convex
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Our contributions

Novel Lyapunov analysis for (projected) stochastic heavy ball (SHB):
e sample complexity of SHB for stochastic weakly convex minimization

e analyze smooth non-convex case under less restrictive assumptions
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Problem formulation

Problem:

minimize f(z) := Ep[f(z;S)] = /Sf(x, s)dP(s)

reX
X is closed and convex; f is p-weakly convex, meaning that
x> flx)+p ||x||§ is convex.

Easy to recognize, e.g., convex compositions

h convex and Ly-Lipschitz; ¢ smooth with L.-Lipschitz Jacobian (p = L, L.)
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Algorithm

Consider

reX

minimize f(z) := Ep[f(z;9)] = /Sf(x, $)dP(s)
Algorithm:

) 1 2
Tpr1 = argmin (2, T — Tk) + 5o |z — zkll5
TEX «
T — Thy1
Zky1 = Bk + (1 — B)TJF

Recovers SHB when X = R"; setting 8 = 1 gives (projected) SGD

Goal: establish sample complexity
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Roadmap and challenges

Most complexity results for subgradient-based methods rely on forming:
E[Vii1] < E[Vi] — aElex] + a*C?
Immediately yields O(1/e?) complexity for Eley]

Stationarity measure:
o fconvex = ey, = f(zx) — f(z*);  f smooth = e}, = ||V f(z) |

o f weakly convex = ¢}, = ||V F) (x|

Lyapunov analysis (for SGD):

o f convex = Vj, = ||z — m*Hg [Shor, 1964]
e f smooth =V}, = f(xy) [Ghadimi-Lan, 2013]
e f weakly convex = V;, = F)\ () [Davis-Drusvyatskiy, 2019]
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Convergence to stationarity in weakly convex cases

Moreau envelope
1
Fa(w)=inf {F(y) + 35 o = I3 |
Proximal mapping

. . 1 2
T := argmin | I + — ||z —
rgmi {F@) + 55 lle =yl }

>

Connection to near-stationarity

ANz — &) = VF\(z)
dist(0,0F(2)) < |[VFx(2)||,

Small ||VF\(z)||, = « close to a near-stationary point

V. V. Mai (KTH) ICML-2020



Lyapunov analysis for SHB

Recall that we wanted

E[Vis1] < E[Vi] — aElex] + a*C?
SGD works with e = ||V F)(z)||5 and Vi, = Fy(z)
It seems natural to take e = ||VF,\()||§

Two questions:

e at which point should we evaluate VF)(-)?
e can we find a corresponding Lyapunov function V7
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Lyapunov analysis for SHB

Our approach: Take VF)(-) at the following iterate

B

Define the corresponding proximal point

Ty =Tk + (2 — Tp—1)

A . 1 .
& = argmin {F(y) + 35 ly = ]} }
yeRrn

This gives

e = VF)\(.fk) = A_l(i‘k — i:k)
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Lyapunov analysis for SHB

Let 8 = va so that 8 € (0,1] and define £ = (1 — 3)/v.

Consider the function:

2 2 1— 2
Vi = Fx(@k) + % w5 + % x5 + <% + §> f(xp—1),
where
Pk = L ;IB (.’L‘k — -'L'k—l) and dk = (Stl‘k_l — .’L‘k) /a.

Theorem: For any k € N, it holds that

« C’L2

E Vi < E[V] - SE[IVE @) 3] +
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Main result: sample complexity

Taking @ = ag/VK and 8 = O(1/VK) € (0,1] yields

|2] <O<pA+L2>
2= K+1

E [||VF1/(2,,) (Tn~)

A = f(xo) —infrex f(x)

Note:

e same worst-case complexity as SGD (8 = 1)

e (3 can be as small as O(1/VK)

e (much) more weight to the momentum term than the fresh subgradient

This rate is, in general, not possible to improve [Arjevani et al., 2019].
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Smooth and non-convex optimization

Problem:

minimize f(z) := Ep[f(z;S)] = /Sf(x, s)dP(s)

reX

X is closed and convex; f is p-smooth:

IVf(x) = V@), <plle—yl,, Y,y € dom f.

Assumption. There exists a real o > 0 such that for all z € X:
’ 2 2
B[ (2,8) - V@3] <o

Note.

e complexity of SHB is not known (even for deterministic case)

e when X = R", O(1/€?) obtained under bounded gradients assumption
[Yan et al., 2018]
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Improved complexities on smooth non-convex problems

Constrained case:

Suppose that |V f(z)||, < G for all z € X. If we set o = \/% then

pA+o—2+G2>
K+1 '

e [IvA@ ] <o

Unconstrained case:

If we set v = —22= with ag € (0,1/(4p)], then

E |V FX(Zy-)

|2} <0 (1+8p%a3) A+ (p + 16agp?)oa ‘
2] = apvVK +1
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Experiments: convergence behavior on phase retrieval
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Figure: Function gap vs. #iters for phase retrieval with pei = 0.2, 8 = 10/V K.

Exponential growth before eventual convergence! not shown
SGD is competitive if well-tuned, but sensitive to stepsize choice

Lobserved also in [Asi-Duchi, 2019]
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Experiments: sensitivity to initial stepsize
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Figure: #epochs to achieve e-accuracy vs. initial stepsize ap with k = 10.
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Experiments: popular momentum parameter
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Figure: #epochs to achieve e-accuracy vs. initial stepsize ap with £ = 10.
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Conclusion

SGD with momentum
e simple modifications to SGD
e good performance and less sensitive to algorithm parameters

Novel Lyapunov analysis
e sample complexity of SHB for weakly convex and constrained optim.

e improved rates on smooth and non-convex problems

V. V. Mai (KTH)



