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Learning to Defer

* Example task: Chest X-ray diagnosis of pneumonia
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Multiple applications in healthcare and content
moderation can (or already) utilize such modules.

Q: How to combine model and expert to
1) achieve better performance and 2)
ease the burden on the radiologist?

Deferral module

A: Given only patient input, learn model
to route decision to either expert or
model in order to maximize system
performance




Our Contributions

* We formalize the learning to defer setting and propose a novel
convex consistent surrogate loss, this loss is motivated by a
reduction to cost sensitive learning. This settles an open problem

by [Ni et al., NeurlPS 2019] for a consistent surrogate for rejection
learning.

* We analyze previous approaches in the literature from a consistency

point of view and give a generalization bound for minimizing the
empirical objective.

* We provide a detailed experimental evaluation of our method on
various tasks.



Related Work

* Madras et al. (NeurlPS 2018) proposes a mixture of experts loss, resulting loss
is not consistent and fails empirically.

* Raghu et al. (2019) propose a confidence score method that compares expert
and algorithm confidence. However, classifier cannot adapt to expert.

* Det al. (AAAI 2020) gives an approximate algorithm for ridge regression,
Wilder et al. (IJCAI 2020) combines mixtures of experts loss and confidence

score comparison.

* Related problems: selective classification (Geifman & El-Yaniv, NeurlPS 2017),
learning with a reject option (Ni et al., NeurlPS 2019)



Learning to Defer: Problem Formulation
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* Jointly learn a classifier h(x) and rejector r(x) to minimize system

loss:
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Reduction to cost sensitive learning

* Cost sensitive learning: given covariate x pick class in [K+1] that
has minimal cost:
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Surrogate loss for cost sensitive learning

* We propose a natural extension of the cross-entropy loss,
let g; : X — R for ¢ € [K 4+ 1] and h(z) = arg max; g;, define

f’CE(gl;"' agK—l—laajac(l)a"' 7C(K_|_ 1))
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= — max c —c(7)) lo exp(gi(2))
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Proposition. Lok is a consistent loss function:

let g = arginfz E [ECE(g, c)| X = ac} then:

arg maX;e[r+1] §i = argmin;ex 417 Elc(i)| X = ]



Minimizing 0-1 error of deferral system

« Data: S = {(z;,y;,m;)}_; where {(x;,y;)}I_, are the targets
and covariates and m; Is the expert prediction

* System loss for misclassification errors:

L()_l(h, ’I“) =K [ Ih(m);éyIT(x)ZO + Im#yIr(a:)zl ]

* Letg,: X > Rforye), h(x)=argmax,cy g,(x),
similarly let g4 : X — R and define 7(x) = I, (2)>max,cy g, (2):
our surrogate becomes:

LCE__log( exp(gy () )_Imylog(z exp(ga()) )

Zy’eyud eXP(gy’ (33)) ' €YU eXp(gy’ (33))




Consistent surrogate loss and heuristic for
adapting to expert

Theorem. The loss Loy Is convex in g, upper bounds Lg_1
and produces consistent estimator for Lgy_1.

e Heuristic with o« € R
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Generalization Bound for Learning

Theorem. For any expert M and P over X x YV, let 0 < 0 < 1
then w.p. at least 1 — ¢, the the empirical minimizers (iz*,'f**) satisfy:
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Takeaway: Sample complexity depends on the expert error, complexity
of model class of classifier and rejector



Experiments: CIFAR-10 setup

* CIFAR 10: image classification over 10 classes, parameterize model g
as a WideResNet with 11 output layers, no data augmentations were
used.

* Synthetic expert: let 1 < k < 10, then if the image belongs to the
first k classes the expert predicts perfectly, otherwise the expert predicts
uniformly at random.

 Baselines: 1) MixOfExp (Madras et al. 2018), 2) Confidence (Raghu et

al. 2019), 3) LearnedOracle: build model to predict if image is in first k
classes and defer accordingly.



Accuracy

Experiments: CIFAR-10 results
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Why do we outperform the baselines?

1. Sample Complexity: as we restrict training o4
data, gains over Confidence increase
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2. Considering classifier's confidence:
LearnedOracle baseline does not look at
confidence of classifier and hence suffers.
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CheXpert Experimental Setup

* CheXpert: large chest X-ray dataset with over 224k
automatically labeled images for the presence of 14
observations (lrvin et al., 2019)

* Synthetic expert: if patient has supporting device,
expert is correct with probability p, otherwise expert

is correct with probability g 3

Chest X-ray of patient

* Baselines: 1) Confidence (Raghu et al., 2019), 2) with Cardiomegaly
ModelConfidence: defer based on confidence of model

» Task: We constrain our method and the baselines to
achieve c% coverage and measure AU-ROC & AU-PR
of the system.



CheXpert Results
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for the toy expert with q=0.7, p=1.



Future Work

* Ongoing work evaluating with real radiologist data

* Integrating (fairness) constraints for deferral with a theoretical
DASIS

* Deferring to multiple experts.



