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Overview

» A pruning version of the Bayesian Online Change-point Detector.
» High probability guarantees in term of:

> False alarm rate.

> Detection delay.

» The detection delay is asymptotically optimal (reaching the existing lower bound
[Lai and Xing, 2010]).

» Empirical comparisons with the original BOCPD [Fearnhead and Liu, 2007] and the
Improved Generalized Likelihood Ratio test [Maillard, 2019].
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B (u+): Bernoulli distribution of mean
e € [0, 1].

Piece-wise stationary process:

Ve € [1,C0),Vt € Te = [Te, Tet1) it = O
Sequence of observations:

Xgit = (g, . Ty)-

Length: ngy =t — s+ 1.



Setting & Notations

Piece-wise stationary Bernoulli distribution

» 3 (u¢): Bernoulli distribution of mean é o
e € [0, 1]. i ‘
> Piece-wise stationary process: ozt
Ve € [1, C] NVteT. = [Tc, Tc+1) e = 0, 4 31 Timcsm?t 101
» Sequence of observations: . Sequence of observations
Xgp = (x& xt) R T—
» Length: ng; =t — s+ 1. g
ol
1 31 7 101

Time step t
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Runlength r;: number of time steps since the last change-point.

Vry € [0,¢ — 1] p (re|x1:1) x Z
—_———

p (re|re—1) p(zelre—1, X1:4-1) p (re—1]X1:-1)
Runlength distributionatt ~ "t~1€ [0,¢—2]

hazard UPM

Constant hazard rate assumption (k € (0, 1)) (geometric inter-arrival time of change-point):
p(re =ri—1 + 1x1:) o< (1 = h) p(@e|ri—1, X1:0—1)p(re—1]%1:0~1)
p(re = 0|x1.1) X hZTH p(@t|re—1,X1:4-1)P(T1-1[X1:6-1)

p(x¢|ri—1,x%1.4—1) is computed via the Laplace predictor as MLE:

STt .
L L ;LS;—&—ZQ lf .Tt+1 = 1
P(reris) =) S0 o)
Ng:t+2 1 xt+1 - O
A4/14
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Forecaster Learning

Forecaster Learning

Instead of runlength r; € [0, ¢ — 1], use the forecaster notion.
Forecaster weight: Vs € [1,t] vs; == p(rs =t — 5|Xs:t)

(1 —h)exp(—lst)vsi—1 Vs <t, (1 —h)"=t 71} exp (—Es:t) Ve Vs<t
Vst = Vst =

hz 1exp( Gl Ws—t 8= b LV, s =t
Instantaneous loss: [ ; := —logLp (z¢|Xs:4—1)-

Ly = Zi,:s ls: cumulative loss and V; = 22:1 Vst
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Main difficulty to provide the theoretical guarantees

Lemma (Computing the initial weight ;)

i—1 h k—1
— t—2 (/ .
=(1-h) Z (1—h> Vit, Where:
k=1
t—k t—(k=1) t—2

k=2
Vie=>_, >, >, oD (—Lml) x [ exp (—Lz']-+1:z']-+1> X exp <_Lik_1+1:t—1> ;
j=1

11=1122=11+1 1=tk _o+1
t—k t— t—2

t
with: 1= t=2 andfs:t = lst.
2. Z 2 o :

i1=140=i1+1 ip_1=tp_o+1 s'=s

Combinatorial number of cumulative losses: very difficult to use classical
concentrations.
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» Initial weight function: V,.;_1 := exp (—fr:t,l) instead of V;.
» Hyper-parameter 7, s, instead of the hazard rate h € (0, 1).
> Restart criterion: Restart,;, = [{3s € (r,¢] : ¥y.54 > Vp 1 -

R-BOCPD update rule Recall BOCPD update rule

For some starting time r:

Nrysit _ 3 1-1 i L Vs<t
Dpos { exp (—lst) Vrsi—1 Vs <t, T {( )exp (=lst) vsi—1 Vs

MNr,s,t—1
Nrtt X Vi1 s =t. h xV; s =t
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Analysis of R-BOCPD

False alarm control

Theorem: False alarm rate control
Assume that (z,,...x;) ~ B (0). Let: o > 1. If:

Mpeg—1 X Tgit log(4a + 2)62 @
Vit € € (rt] :nrst <
[rs7) 8 € (rat] = st 107441 An,log((a+ 3) npy)

then, with probability higher than 1 — ¢, no false alarm occurs on the interval [r, 7):

Vo € (0,1) Pg{fl t € [r,7) : Restart,; = 1} <0.

Q/14 Fora~1, Nr,s,t = O( 1 )

t—r+1



Analysis of R-BOCPD

Detection delay control

Theorem: Detection delay control

Let (zy,...xr—1) ~ B (61), (zr,...x;) ~ B (02) and A = |0; — 6,|: the change-point gap.
Then, let: f, s+ = logn,.s + log ng.tr1 — %log Tyt + %.

Ifn, s+ > exp ( — 2Ny g1 (Apgt — Cr,s,m)2 + fr,s’t), then, the change-point 7 is detected
(with a probability at least 1 — ) with a delay not exceeding D a .-, such that:

—2
_ YryrdtT—1,6

@
1
8 ( A 71 R T— iNin T—
:DA,T,TZHHH{dEN*:d> s¢ =198 ndpr—1t Frmdir1 }7

2A2 + log 77T,T,d+7'71_f7‘,7',d+7'71
2
2”7“,7'71 (A_C’I‘,T,dJrT*l,é)

. L 2T 1+ /a1 log? (n,.
with: cns,t,g:?(\/ st log ( V?“)+\/ et log (et el ) ).

qQ/14

Nr,s,t = Q (exp(_nr,s,t)) and Cr,s,t,6 = O(\/log (nT':S/(S) /nr:sfl + \/10g (ns:t+1/6) /ns:t)
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Analysis of R-BOCPD

Asymptotic analysis of the Detection delay

200

100

Existing lower bound [Lai and Xing, 2010].
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Generate 2500 trajectories (sequences)
of length 7" = 5000.

Vary the number of observation before
the change in [10, 1000].

Vary the change-point gap A in [0.01, 1].

Plot detection delays differences
between R-BOCPD and BOCPD.

Number of observations before change-point

900

800

700

600

300

200

100

T

0.2

0.4 0.6
Change-point gap A

0.8



Empirical comparisons
Comparison with the original BOCPD: Benchmark 2

12/14



Empirical comparisons

Comparison with the original BOCPD: Benchmark 2

Benchmark 2: Highlighting the use of the restart
procedure Restart,.;

12/14



Empirical comparisons

Comparison with the original BOCPD: Benchmark 2

Benchmark 2: Highlighting the use of the restart
procedure Restart,.;

» Piece-wise stationary Bernoulli process
71 =1,7 = 301,73 = 701,74 = 1051.

12/14



Empirical comparisons

Comparison with the original BOCPD: Benchmark 2

Benchmark 2: Highlighting the use of the restart
procedure Restart,.;

» Piece-wise stationary Bernoulli process
71 =1,7 = 301,73 = 701,74 = 1051.

» Run R-BOCPD and BOCPD.

12/14



Empirical comparisons

Comparison with the original BOCPD: Benchmark 2

Benchmark 2: Highlighting the use of the restart
procedure Restart,.;

» Piece-wise stationary Bernoulli process
71 =1,7 = 301,73 = 701,74 = 1051.
» Run R-BOCPD and BOCPD.

» Plot the change-point estimation 7; for
both R-BOCPD and BOCPD.

12/14



Empirical comparisons
Comparison with the original BOCPD: Benchmark 2

Piece-wise stationary Bernoulli distribution

oo
QOO

Benchmark 2: Highlighting the use of the restart
procedure Restart,.;

Expectations
[=]=]
B

o

301 701 1051 1251

» Piece-wise stationary Bernoulli process ! Time step 1

T = 1, Ty = 301, T3 — 701, 74 = 1051. Change-point estimation 7
> Run R‘BOCPD and BOCPD. 1051 [ s R-BOCPD
» Plot the change-point estimation 7; for 701 —20crD

both R-BOCPD and BOCPD. so1

" ‘ ‘ |
1 301 701 1051 1251
Time step ¢
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Comparison with the Improved GLR [Maillard, 2019]

Improved GLR final formulation

s t
%Zlyi—ﬁ > Y
1=

IMPGLRs (y1, ..., y¢) = ]1{33 € [L,t):
i=s+1

= %5,S,t}
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Improved GLR final formulation

S t

IMPGLRs (1, - ) =I{3s € [1L,8) : |1 Sy — s 2 wi| > G}
=1 i=s+1
—S O; 2
o =+ 0 () e s (L)
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