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Overview

I A pruning version of the Bayesian Online Change-point Detector.

I High probability guarantees in term of:
I False alarm rate.
I Detection delay.

I The detection delay is asymptotically optimal

(reaching the existing lower bound
[Lai and Xing, 2010]).

I Empirical comparisons with the original BOCPD [Fearnhead and Liu, 2007] and the
Improved Generalized Likelihood Ratio test [Maillard, 2019].
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Setting & Notations

I B (µt): Bernoulli distribution of mean
µt ∈ [0, 1].

I Piece-wise stationary process:
∀c ∈ [1, C] ,∀t ∈ Tc = [τc, τc+1)µt = θc

I Sequence of observations:
xs:t = (xs, ...xt).

I Length: ns:t = t− s+ 1.
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Bayesian Online Change-point Detector
Runlength inference

Runlength inference

Runlength rt: number of time steps since the last change-point.

∀rt ∈ [0, t− 1] p (rt|x1:t)︸ ︷︷ ︸
Runlength distribution at t

∝
∑

rt−1∈[0,t−2]

p (rt|rt−1)︸ ︷︷ ︸
hazard

p (xt|rt−1,x1:t−1)︸ ︷︷ ︸
UPM

p (rt−1|x1:t−1)

Constant hazard rate assumption (h ∈ (0, 1)) (geometric inter-arrival time of change-point):{
p(rt = rt−1 + 1|x1:t) ∝ (1− h) p(xt|rt−1,x1:t−1)p(rt−1|x1:t−1)

p(rt = 0|x1:t) ∝ h
∑

rt−1
p(xt|rt−1,x1:t−1)p(rt−1|x1:t−1)

p(xt|rt−1,x1:t−1) is computed via the Laplace predictor as MLE:

Lp (xt+1|xs:t) :=

{∑t
i=s xi+1
ns:t+2 if xt+1 = 1∑t
i=s(1−xi)+1
ns:t+2 if xt+1 = 0
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Bayesian Online Change-point Detector
Forecaster Learning

Forecaster Learning

Instead of runlength rt ∈ [0, t− 1], use the forecaster notion.
Forecaster weight: ∀s ∈ [1, t] vs,t := p(rt = t− s|xs:t)

vs,t =

{
(1− h) exp (−ls,t) vs,t−1 ∀s < t,

h
∑t−1

i=1 exp (−li,t) vi,t−1 s = t .

vs,t =

{
(1− h)ns:t hI{s6=1} exp

(
−L̂s:t

)
Vs ∀s < t,

hVt s = t.

Instantaneous loss: ls,t := − log Lp (xt|xs′:t−1).
L̂s:t :=

∑t
s′=s ls,t: cumulative loss and Vt =

∑t
s=1 vs,t
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Main difficulty to provide the theoretical guarantees

Lemma (Computing the initial weight Vt)

Vt = (1− h)t−2
t−1∑
k=1

(
h

1− h

)k−1

Ṽk:t,

where:

Ṽk:t =

t−k∑
i1=1

t−(k−1)∑
i2=i1+1

...

t−2∑
ik−1=ik−2+1

exp
(
−L̂1:i1

)
×
k−2∏
j=1

exp
(
−L̂ij+1:ij+1

)
× exp

(
−L̂ik−1+1:t−1

)
,

with:

t−k∑
i1=1

t−(k−1)∑
i2=i1+1

...

t−2∑
ik−1=ik−2+1

1 =

(
t− 2

k − 1

)

and L̂s:t :=

t∑
s′=s

ls,t

.

Combinatorial number of cumulative losses: very difficult to use classical
concentrations.

6/14



Main difficulty to provide the theoretical guarantees

Lemma (Computing the initial weight Vt)

Vt = (1− h)t−2
t−1∑
k=1

(
h

1− h

)k−1
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From BOCPD to Restarted-BOCPD

Some modifications of BOCPD to tackle the theoretical difficulty.
I Restart time r >= 0 (updated for each time a change-point is raised).

I Initial weight function: Vr:t−1 := exp
(
−L̂r:t−1

)
instead of Vt.

I Hyper-parameter ηr,s,t instead of the hazard rate h ∈ (0, 1).
I Restart criterion: Restartr:t = I

{
∃s ∈ (r, t] : ϑr,s,t > ϑr,r,t

}
.

R-BOCPD update rule

For some starting time r:

ϑr,s,t ←

{
ηr,s,t
ηr,s,t−1

exp (−ls,t)ϑr,s,t−1 ∀s < t,

ηr,t,t × Vr:t−1 s = t.

Recall BOCPD update rule

vs,t ←

{
(1− h) exp (−ls,t) vs,t−1 ∀s < t,

h× Vt s = t.
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Analysis of R-BOCPD
False alarm control

Theorem: False alarm rate control

Assume that (xr, ...xt) ∼ B (θ). Let: α > 1. If:

∀t ∈ [r, τ) , s ∈ (r, t] : ηr,s,t <

√
nr:s−1 × ns:t
10nr:t+1

(
log(4α+ 2)δ2

4nr:t log((α+ 3)nr:t)

)α
then, with probability higher than 1− δ, no false alarm occurs on the interval [r, τ):

∀δ ∈ (0, 1) Pθ
{
∃ t ∈ [r, τ) : Restartr:t = 1

}
6 δ.

For α ≈ 1, ηr,s,t = O
(

1
t−r+1

)
8/14



Analysis of R-BOCPD
Detection delay control

Theorem: Detection delay control

Let (xr, ...xτ−1) ∼ B (θ1), (xτ , ...xt) ∼ B (θ2) and ∆ = |θ1 − θ2|: the change-point gap.
Then, let: fr,s,t = log nr:s + log ns:t+1 − 1

2 log nr:t + 9
8 .

If ηr,s,t > exp
(
− 2nr,s−1 (∆r,s,t − Cr,s,t,δ)2 + fr,s,t

)
, then, the change-point τ is detected

(with a probability at least 1− δ) with a delay not exceeding D∆,r,τ , such that:

D∆,r,τ = min

{
d ∈ N? : d >

(
1−
Cr,τ,d+τ−1,δ

∆

)−2

2∆2 × − log ηr,τ,d+τ−1+fr,τ,d+τ−1

1+
log ηr,τ,d+τ−1−fr,τ,d+τ−1

2nr,τ−1(∆−Cr,τ,d+τ−1,δ)
2

}
,

with: Cr,s,t,δ =
√

2
2

(√
1+ 1

nr:s−1

nr:s−1
log
(

2
√
nr:s
δ

)
+

√
1+

1
ns:t
ns:t

log
(

2nr:t
√
ns:t+1 log2(nr:t)

log(2)δ

))
.

ηr,s,t = Ω (exp(−nr,s,t)) and Cr,s,t,δ = O
(√

log (nr:s/δ) /nr:s−1 +
√

log (ns:t+1/δ) /ns:t
)
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Analysis of R-BOCPD
Asymptotic analysis of the Detection delay

Asymptotic Analysis

if ηr,s,t = 1
t−r+1 , then in the asymptotic

regime:

D|θ2−θ1|,r,τ →τ→∞
o
(
log 1

δ

)
2 |θ2 − θ1|2

= O

(
o
(
log 1

δ

)
KL (θ2, θ1)

)

Existing lower bound [Lai and Xing, 2010].
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Empirical comparisons
Comparison with the original BOCPD: Benchmark 1

Benchmark 1: Highlighting the use of the
function Vr:t−1 instead of Vt

I Generate 2500 trajectories (sequences)
of length T = 5000.

I Vary the number of observation before
the change in [10, 1000].

I Vary the change-point gap ∆ in [0.01, 1].
I Plot detection delays differences

between R-BOCPD and BOCPD.
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Empirical comparisons
Comparison with the original BOCPD: Benchmark 2

Benchmark 2: Highlighting the use of the restart
procedure Restartr:t

I Piece-wise stationary Bernoulli process
τ1 = 1, τ2 = 301, τ3 = 701, τ4 = 1051.

I Run R-BOCPD and BOCPD.
I Plot the change-point estimation τ̂t for

both R-BOCPD and BOCPD.
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Empirical comparisons
Comparison with the Improved GLR [Maillard, 2019]

Improved GLR final formulation

IMPGLRδ (y1, ..., yt) = I
{
∃s ∈ [1, t) :

∣∣∣∣1s s∑
i=1

yi − 1
t−s

t∑
i=s+1

yi

∣∣∣∣ > Cδ,s,t
}

Cδ,s,t =
√

2
2

(√
1
s + 1

s2
log
(

2
√
s+1
δ

)
+

√
1
t−s + 1

(t−s)2 log
(

2t
√
t−s+1 log2(t)

log(2)δ

))
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Empirical comparisons
Comparison with the Improved GLR [Maillard, 2019]

Benchmark :

I Generate 2500 trajectories (sequences)
of length T = 2500.

I Vary the number of observation before
the change in [10, 500].

I Vary the change-point gap ∆ ∈ [0.01, 1].
I Plot the difference of detection delays

between R-BOCPD and Improved GLR.
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