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THE GOAL OF DISTANCE METRIC LEARNING (DML)

Learn a mapping f; from the original feature space to a
representation space where similar examples are closer than
dissimilar examples in the learned representation space.
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The training objectives of deep DML methods encourage
intra-class compactness and inter-class separability.
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EMBEDDING LOSS

m Contrastive loss [Chopra et al., 2005]:
L contrastive = [d(Xa-, Xp) - mpos]+ + [mneg - d(Xa-, Xn)]+

m Triplet loss [Schroff et al., 2015]: £yiper = [d(xa, Xp) — d(Xa, xn) + m]+
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EMBEDDING LOSS

m Contrastive loss [Chopra et al., 2005]:
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m Triplet loss [Schroff et al., 2015]: £yiper = [d(xa, Xp) — d(Xa, xn) + m]+

CLASSIFICATION L.OSS

m AMSoftmax loss [Wang et al., 2018]: £ay = —log —y
e
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Trade-off between intra-class compactness and inter-class
separability.

m Intra-class compactness: risk of filtering out useful factors (for
open-set classification )

m Inter-class separability: risk of introducing nuisance factors
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compactness and inter-class separability?
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improve the DML representation?
RESULTS

Additional explicit penalizations on intra-class

distances of representations is risky for the
classification loss methods (AMSoftmax).
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MOTIVATION

m |s it possible to find a better balance point between intra-class
compactness and inter-class separability?

m How to leverage the hierarchical representations of DNNs to
improve the DML representation?
RESULTS

Additional explicit penalizations on intra-class

distances of representations is risky for the

classification loss methods (AMSoftmax).

Class Level
Representation

Encouraging inter-class separability by
penalizing distributional similarities of joint
representations is beneficial for the

Joint
Representation DML
Representation
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classification loss methods (AMSoftmax). P

We propose a framework distance metric Convolutional Layers
learning with joint representation A
diversification (JRD).



[ Jele}
CHALLENGE
m How to measure the similarities of joint distributions of representations
across multiple layers?
SOLUTION
m Representers of probability measures in the reproducing kernel Hilbert
space (RKHS)
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Definition 1 (kernel mean embedding).

Let M1(X) be the space of all probability measures > on a measurable space
(X,X). RKHS is a reproducing kernel Hilbert space with reproducing kernel
k. The kernel mean embedding is defined by the mapping,

pi ML(X) — RKHS, P+ [k(-,x)dP(x) = pp.
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m How to measure the similarities of joint distributions of representations
across multiple layers?
SOLUTION

m Representers of probability measures in the reproducing kernel Hilbert
space (RKHS)

Definition 1 (kernel mean embedding).

Let M1(X) be the space of all probability measures > on a measurable space
(X,X). RKHS is a reproducing kernel Hilbert space with reproducing kernel
k. The kernel mean embedding is defined by the mapping,

pi ML(X) — RKHS, P+ [k(-,x)dP(x) = pp.

Definition 2 (cross-covariance operator)

Let M} (xF_1X") be the space of all probability measures > on x5, X"

R RKHS' = RKHS' @ - - - @ RKHS" is a tensor product space with
reproducing kernels {k'}5_;. The cross-covariance operator is defined by the
mapping, Cxie : Mi (x5, X)) — QL RKHS,

P fX:L 1X,((X)f‘:lk'(-,x'))d]P’(xl, ooy xh) 2 Cyu (P).



Definition 3 (joint representation similarity)

Suppose that P(X', ..., X") and Q(X™, ..., X'") are probability measures on
xf_1X'. Given L reproducing kernels {k'}}_;, the joint representation similarity
between IP and Q is defined as the inner product of Cxi..(P) and Cxn.(Q) in
RF I RKHS' ie.,

SJRS(]P: Q) = <CxlrL(P): Cx’lrL(Q»@,L:lRm{s/ (1)



Definition 3 (joint representation similarity)

Suppose that P(X', ..., X") and Q(X™, ..., X'") are probability measures on
xf_1X'. Given L reproducing kernels {k'}}_;, the joint representation similarity
between IP and Q is defined as the inner product of Cxi..(P) and Cxn.(Q) in
RF I RKHS' ie.,

Surs (P: Q) = <CxlrL (P): Cxnit (Q)> ®L  RKHS/ (1)

Proposition 1 (interpretation for translation invariant kernels)

Suppose that {k’(x,x") = ¥'(x — x')}_; on RY are bounded, continuous
reproducing kernels. Let P! £ P(X'|X¥~1) for / =1,..., L with P* = P(X}).
Then for any P(X!,..., X5, Q(X"?, ..., X" € Mi(xb, &),

L

Sirs(P,Q) = H<¢P/ (w), pq1 (W) 2(r3 A1) (2)

I=1

where ¢pi(w) and ¢oi(w) are the characteristic functions of the distributions P’
and Q', and A is a (normalized) non-negative Borel measure characterized by

W(x—x).
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Definition 4 (joint representation similarity regularizer)

Considering P(X—, X, X™), the joint representation similarity regularizer £ rs
penalizes the empirical joint representation similarities for all class pairs, specifically,

nl nJ
Lirs 2> n'n!Sprs(P,P) =3 ">">" k*(xf*,ij*)k(xf,xj)k*(xﬁ,xf*), (3)

1#£J 1#£J i=1 j=1

! ,J

where k—, k and kT are reproducing kernels, /, J are indexes of class, n'n’ re-weights

class pair (/,J) according to its credibility.
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Definition 4 (joint representation similarity regularizer)

Considering P(X—, X, X™), the joint representation similarity regularizer £ rs
penalizes the empirical joint representation similarities for all class pairs, specifically,

nl nJ
Lirs 2> n'n!Sprs(P,P) =3 ">">" k*(xf*,ij*)k(xf,xj)k*(xﬁ,xf*), (3)

1#£J 1#J i=1 j=1
where k=, k and k™ are reproducing kernels, I, J are indexes of class, n'n’ re-weights
class pair (/,J) according to its credibility.
[ Joint Representation Similarity Regularizer ]
[ Classification Loss [ Classification Loss ]
A
Class Level I+ I+ TRAINING OBJECTIVE:
Representation X
DML Joint 1
Representation x’ X} Representation LJRD = Z:AMSoft + o - ﬁJRSa
'pairs
: ©)

O O O x]— where N5 denotes the number of
pairs of instances from different classes

in a mini-batch.
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EXPERIMENTAL SETTINGS

Datasets
CUB-200-2011 (CUB)
Cars196 (CARS)
Standard Online Products (SOP)
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Kernel design
m Mixture of K Gaussian kernels "
K _ _ ’
k(ox') = % Sics en(=05F )

m K=3for X~ and X, K’ =1 for X*

Evaluation Metric
m RecalloK
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Implementation details
m Backbone: Inception-BN
m Embedding size: 512

m Data augmentation: Random crop,
random horizontal mirroring

m Optimizer: Adam

m Epochs: 50 for CUB and CARS,80
for SOP

m Learning rate decay: Divided by 10
every 20(40) epochs for CUB and
CARS (SOP)

m Mini-batch sampling: Random
sampling
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CoOMPARING JRD wiTH 2019 DML BASELINES

CUB CARS SOP

RecallOK (%) T 2 7 B 1 2 7 8 T 0 100
DE_DSP [Duan et al., 2019] 536 655 769 - 729 816 888 - 689 840 026
HDML [Zheng et al., 2019] 537 657 767 8.7 | 791 8.1 921 955 | 687 832 024
DAMLRRM [Xu et al., 2019 551 665 768 8.3 | 735 826 891 935 | 69.7 852 932
ECAML [Chen and Deng, 2019a] | 55.7 665 767 851 | 845 90.4 938 966 | 713 856  03.6
DeML [Chen and Deng, 2019b] 654 753 837 895 | 863 912 943 970 | 761 884 949
SoftTriple Loss [Qian et al., 2019] | 65.4  76.4 845 004 | 845 907 945 969 | 783 903 959
MS [Wang et al., 2019] 657 770 863 912 | 841 Q0. 040 965 | 78. 905  96.0

JRD 67.9 78.7 86.2 91.3 84.7 90.7 94.4 97.2 79.2 90.5 96.0
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CoOMPARING JRD wiTH 2019 DML BASELINES

CUB CARS SOP

RecallOK(%) 1 2 7 3 1 2 7 g 1 10 00
DE_DSP [Duan et al., 2019] 536 655 760 - 729 816 888 - 680 840 926
HDML [Zheng et al., 2019] 537 657 767 857 | 791 871 921 955 | 687 832 924
DAMLRRM [Xu et al., 2019] 551 665 768 8.3 | 735 826 891 935 | 69.7 852 932
ECAML [Chen and Deng, 2019a] | 557 665 767 851 | 845 904 938 966 | 713 856  93.6
DeML [Chen and Deng, 2019b] 654 753 837 895 | 863 912 943 970 | 761 884 949
SoftTriple Loss [Qian et al., 2010] | 654 764 845 004 | 845 907 945 969 | 783 903 959
MS [Wang et al., 2019] 657 770 863 912 | 841 Q0. 040 965 | 78. 905  96.0
JRD 679 787 862 013 | 847 007 044 072 | 79.2 005 960

SENSITIVITY OF o

_ — CcuB 84.5 - —— CARS 79 - —— sSOP
X 67.5-
g 84.0 - 78 -
©67.0-
o 83.5 -
g 77 -

66.5 -
o 83.0 -

76 -

0 0.050.1 0205 1 2 0 0.050.1 0205 1 2 0 0.050.10205 1 2
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EFFECTS OF MODELING THE JOINT REPRESENTATION

[ Joint Representation Similarity Regularizer ]

[ Classification Loss ] [ Classification Loss ]
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EFFECTS OF MODELING THE JOINT REPRESENTATION

[ Joint Representation Similarity Regularizer ]

[ Classification Loss ] [ Classification Loss ]

(3355 Level XH’O_é_(‘)‘ J' @ X+
* X .
oML X! |O O O | @X/ Repre‘:el::a(ioﬂ
ST
il

;/\\‘A{/‘
Poolin ] : m
. 0001 Fooow
Convolutional Layers stared | Convolutional Layers
CUB

Recall@K(%) 1 2 4 8

JRD 50.7(L1) _ 63.7(1.1) 748(1.2) 84.1(1.2)

MRD 204(11) 623(1.1) 745(12) 83.6(1.2)

JRD-C 48.6(1.5)  61.4(1.4) 73.4(15)  83.0(1.4)

JRD-Pooling | 49.4(1.2)  622(1.0) 74.1(1.2)  83.3(1.0)

CARS SOP

RecallOK(%) | 1 2 7 B T 0 100
JRD 61.2(1.3) 72.6(0.9)  82.2(0.6) 89.2(0.7) | 792 905  96.0
MRD 508(1.3)  71.5(1.2) 80.6(0.0) 88.0(09) | 788 904 959
JRD-C 58.5(1.5)  69.6(1.3)  79.1(0.7)  86.6(0.9) | 77.7 89.8 956
JRD-Pooling | 59.1(15) 70.7(1.2)  80.3(0.5) 87.7(0.6) | 79.0 904 959
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EXPLICIT PENALIZATION ON INTRA-CLASS DISTANCES

Blue Jay Florida Jay
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EXPLICIT PENALIZATION ON INTRA-CLASS DISTANCES

Blue Jay Florida Jay
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Unseen
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Theorem 1 [Ben-David et al., 2010

Let H be a hypothesis space. Denote by €s and €, the generalization errors on
Ds and D, then for every h € H.:

eu(h) <es(h) + dw(Ds, Du) + M. (6)
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EXPLICIT PENALIZATION ON INTRA-CLASS DISTANCES
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Theorem 1 [Ben-David et al., 2010

Let H be a hypothesis space. Denote by ¢s and ¢, the generalization errors on
Ds and D, then for every h € H.:

eu(h) <es(h) + d(Ds, Du) + . (6)



O000e0
JRS VERSuUs MMD

2 2 2 2
MMD*(P, Q) = llup — kgllRicus = el Rcns + IkollRicHs — 2(up, o) REHS (7)




Experiment
0000e0

JRS VERSuUs MMD

2 2 2 2
MMD*(P, Q) = llup — kgllRicus = el Rcns + IkollRicHs — 2(up, o) REHS

™

0.50

0.45

@1l

Recall

0.40

0.35

& Jintra
—&— JMMD
0.30- —e~ JRD
(‘) (l‘\ (1‘7 ()‘11 (7‘&) U‘(’i l
a
L amsort + aRegularizer (8)

Regularizers Recall@1 ANN ‘;HNN

JMMD(a@0.1) _ 0.486(0.015) _ 0.321(0.006) _ 0.9275(0.003)

JRD(a@1) 0.506(0.013)  0.310(0.006)  0.934(0.004)
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KERNEL CHOICE

Kernel k(x,x")

2
Gaussian exp(—%)
Laplace exp(fm)

g
degree-p Inhomogeneous polynomial kernel  (x-x' + 1)P

Kernel inducing MGF exp(x - x)
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KERNEL CHOICE

Kernel k(x,x")
Gaussian exp(—(x;i’;/)Z)
Laplace exp(fW)
degree-p Inhomogeneous polynomial kernel  (x-x' + 1)P
Kernel inducing MGF exp(x - x)
k(x,x") Recall@1(%) Recall@2(%) Recall©4(%) Recall@8(%)
2
exp(— %L (a01) | 67.9 785 86.1 91.2
exp(—12=x111) (n01) | 68.1 78.2 86.4 91.8
(x-x"+1)? (a@le-3) | 66.1 77.0 85.3 90.9
(x-x' +1)° (a@le-3) | 65.2 76.2 86.4 90.7
exp(x - x') (a@le-3) 66.1 76.7 85.4 91.1
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KERNEL CHOICE

Kernel k(x,x")
Gaussian exp(—(x;i’;/)Z)
Laplace exp(fW)
degree-p Inhomogeneous polynomial kernel  (x-x' + 1)P
Kernel inducing MGF exp(x - x)
k(x,x") Recall@1(%) Recall@2(%) Recall©4(%) Recall@8(%)
2
exp(— %L (a01) | 67.9 785 86.1 91.2
exp(—1x=¥l1) (a@1) | 68.1 78.2 86.4 91.8
(x-x"+1)? (a@le-3) | 66.1 77.0 85.3 90.9
(x-x' +1)° (a@le-3) | 65.2 76.2 86.4 90.7
exp(x - x') (a@le-3) 66.1 76.7 85.4 91.1
SOURCE CODE: https://github.com/YangLin122/JRD

CONTACT EMAIL: chu_xu@pku.edu.cn
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