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The goal of distance metric learning (DML)

Learn a mapping fθ from the original feature space to a
representation space where similar examples are closer than
dissimilar examples in the learned representation space.
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The training objectives of deep DML methods encourage
intra-class compactness and inter-class separability.
Embedding Loss

Contrastive loss [Chopra et al., 2005]:
`contrastive = [d(xa, xp)−mpos ]+ + [mneg − d(xa, xn)]+

Triplet loss [Schroff et al., 2015]: `triplet = [d(xa, xp)− d(xa, xn) + m]+

· · ·
Classification Loss

AMSoftmax loss [Wang et al., 2018]: `AM = −log e
s(Sim(xi ,wyi

)−m)

e
s(Sim(xi ,wyi

)−m)
+ΣC

j 6=yi
e
sSim(xi ,wj )

· · ·
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Trade-off between intra-class compactness and inter-class
separability.

Intra-class compactness: risk of filtering out useful factors (for
open-set classification )

Inter-class separability: risk of introducing nuisance factors

Seen 
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Florida JayBlue Jay
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Yellow Warbler?
Wilson Warbler?
Orange Crowned Warbler?
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Motivation

Is it possible to find a better balance point between intra-class
compactness and inter-class separability?

How to leverage the hierarchical representations of DNNs to
improve the DML representation?

Results

1 Additional explicit penalizations on intra-class
distances of representations is risky for the
classification loss methods (AMSoftmax).

2 Encouraging inter-class separability by
penalizing distributional similarities of joint
representations is beneficial for the
classification loss methods (AMSoftmax).

3 We propose a framework distance metric
learning with joint representation
diversification (JRD).
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Challenge
How to measure the similarities of joint distributions of representations
across multiple layers?

Solution
Representers of probability measures in the reproducing kernel Hilbert
space (RKHS)

Definition 1 (kernel mean embedding).

Let M1
+(X ) be the space of all probability measures P on a measurable space

(X ,Σ). RKHS is a reproducing kernel Hilbert space with reproducing kernel
k. The kernel mean embedding is defined by the mapping,
µ : M1

+(X ) −→ RKHS, P 7−→
∫
k(·, x)dP(x) , µP.

Definition 2 (cross-covariance operator)

Let M1
+(×L

l=1X l) be the space of all probability measures P on ×L
l=1X l .

⊗L
l=1RKHS l = RKHS1 ⊗ · · · ⊗ RKHSL is a tensor product space with

reproducing kernels {k l}Ll=1. The cross-covariance operator is defined by the
mapping, CX1:L : M1

+(×L
l=1X l) −→ ⊗L

l=1RKHS l ,
P 7→

∫
×L

l=1
Xl (⊗L

l=1k
l(·, xl))dP(x1, . . . , xL) , CX1:L(P).
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Definition 3 (joint representation similarity)

Suppose that P(X1, . . . ,XL) and Q(X′1, . . . ,X′L) are probability measures on
×L

l=1X l . Given L reproducing kernels {k l}Ll=1, the joint representation similarity
between P and Q is defined as the inner product of CX1:L(P) and CX′1:L(Q) in
⊗L

l=1RKHS l , i.e.,

SJRS(P,Q) , 〈CX1:L(P), CX′1:L(Q)〉⊗L
l=1
RKHS l (1)

Proposition 1 (interpretation for translation invariant kernels)

Suppose that {k l(x, x′) = ψl(x− x′)}Ll=1 on Rd are bounded, continuous
reproducing kernels. Let P l , P(Xl |X1:l−1) for l = 1, . . . , L with P1 = P(X1).
Then for any P(X1, . . . ,XL),Q(X′1, . . . ,X′L) ∈ M1

+(×L
l=1X l),

SJRS(P,Q) =
L∏

l=1

〈φP l (ω), φQ l (ω)〉L2(Rd ,Λl ), (2)

where φP l (ω) and φQ l (ω) are the characteristic functions of the distributions P l

and Q l , and Λl is a (normalized) non-negative Borel measure characterized by
ψl(x− x′).
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Definition 4 (joint representation similarity regularizer)

Considering P(X−,X,X+), the joint representation similarity regularizer LJRS
penalizes the empirical joint representation similarities for all class pairs, specifically,

LJRS ,
∑
I 6=J

nInJ ŜJRS (PI ,PJ) =
∑
I 6=J

nI∑
i=1

nJ∑
j=1

k−(xI−i , xJ−j )k(xIi , x
J
j )k+(xI+i , xJ+

j ), (3)

where k−, k and k+ are reproducing kernels, I , J are indexes of class, nInJ re-weights
class pair (I , J) according to its credibility.

Training Objective:

LJRD = LAMSoft + α
1

Npairs

LJRS ,

(4)
where Npairs denotes the number of
pairs of instances from different classes
in a mini-batch.



Introduction Method Experiment References

Definition 4 (joint representation similarity regularizer)

Considering P(X−,X,X+), the joint representation similarity regularizer LJRS
penalizes the empirical joint representation similarities for all class pairs, specifically,

LJRS ,
∑
I 6=J
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Experimental Settings

Datasets
1 CUB-200-2011 (CUB)

2 Cars196 (CARS)

3 Standard Online Products (SOP)

Kernel design
Mixture of K Gaussian kernels

k(x, x′) = 1
K

∑K
k=1 exp(−(x−x′)2

σ2
k

)

K = 3 for X− and X, K ′ = 1 for X+

Evaluation Metric
Recall@K

Implementation details
Backbone: Inception-BN

Embedding size: 512

Data augmentation: Random crop,
random horizontal mirroring

Optimizer: Adam

Epochs: 50 for CUB and CARS,80
for SOP

Learning rate decay: Divided by 10
every 20(40) epochs for CUB and
CARS (SOP)

Mini-batch sampling: Random
sampling

...
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Comparing JRD with 2019 DML baselines

CUB CARS SOP
Recall@K(%) 1 2 4 8 1 2 4 8 1 10 100
DE DSP [Duan et al., 2019] 53.6 65.5 76.9 - 72.9 81.6 88.8 - 68.9 84.0 92.6
HDML [Zheng et al., 2019] 53.7 65.7 76.7 85.7 79.1 87.1 92.1 95.5 68.7 83.2 92.4
DAMLRRM [Xu et al., 2019] 55.1 66.5 76.8 85.3 73.5 82.6 89.1 93.5 69.7 85.2 93.2
ECAML [Chen and Deng, 2019a] 55.7 66.5 76.7 85.1 84.5 90.4 93.8 96.6 71.3 85.6 93.6
DeML [Chen and Deng, 2019b] 65.4 75.3 83.7 89.5 86.3 91.2 94.3 97.0 76.1 88.4 94.9
SoftTriple Loss [Qian et al., 2019] 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9 78.3 90.3 95.9
MS [Wang et al., 2019] 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5 78.2 90.5 96.0
JRD 67.9 78.7 86.2 91.3 84.7 90.7 94.4 97.2 79.2 90.5 96.0

Sensitivity of α

0 0.05 0.1 0.2 0.5 1 2

66.5

67.0

67.5
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ll@
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%
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Effects of modeling the joint representation

CUB
Recall@K(%) 1 2 4 8
JRD 50.7(1.1) 63.7(1.1) 74.8(1.2) 84.1(1.2)
MRD 49.4(1.1) 62.3(1.1) 74.5(1.2) 83.6(1.2)
JRD-C 48.6(1.5) 61.4(1.4) 73.4(1.5) 83.0(1.4)
JRD-Pooling 49.4(1.2) 62.2(1.0) 74.1(1.2) 83.3(1.0)

CARS SOP
Recall@K(%) 1 2 4 8 1 10 100
JRD 61.2(1.3) 72.6(0.9) 82.2(0.6) 89.2(0.7) 79.2 90.5 96.0
MRD 59.8(1.3) 71.5(1.2) 80.6(0.9) 88.0(0.9) 78.8 90.4 95.9
JRD-C 58.5(1.5) 69.6(1.3) 79.1(0.7) 86.6(0.9) 77.7 89.8 95.6
JRD-Pooling 59.1(1.5) 70.7(1.2) 80.3(0.5) 87.7(0.6) 79.0 90.4 95.9
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Explicit penalization on intra-class distances

Seen 
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Unseen 
Classes

Florida JayBlue Jay

Hooded Warbler?
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Wilson Warbler?
Orange Crowned Warbler?

LAMSoft − α
∑
I

1

N I
pairs

∑
xI
i
,xI
j
∈TI

e
− 1

2
(xIi−xIj )2

(5)
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1.6
H divergences

Theorem 1 [Ben-David et al., 2010]
Let H be a hypothesis space. Denote by εs and εu the generalization errors on
Ds and Du, then for every h ∈ H:

εu(h) ≤εs(h) + d̂H(Ds ,Du) + λ. (6)



Introduction Method Experiment References

Explicit penalization on intra-class distances

Seen 
Classes

Unseen 
Classes

Florida JayBlue Jay

Hooded Warbler?
Yellow Warbler?
Wilson Warbler?
Orange Crowned Warbler?

LAMSoft − α
∑
I

1

N I
pairs

∑
xI
i
,xI
j
∈TI

e
− 1

2
(xIi−xIj )2

(5)

0.0 0.01 0.1 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

1.6
H divergences

Theorem 1 [Ben-David et al., 2010]
Let H be a hypothesis space. Denote by εs and εu the generalization errors on
Ds and Du, then for every h ∈ H:

εu(h) ≤εs(h) + d̂H(Ds ,Du) + λ. (6)



Introduction Method Experiment References

Explicit penalization on intra-class distances

Seen 
Classes

Unseen 
Classes

Florida JayBlue Jay

Hooded Warbler?
Yellow Warbler?
Wilson Warbler?
Orange Crowned Warbler?

LAMSoft − α
∑
I

1

N I
pairs

∑
xI
i
,xI
j
∈TI

e
− 1

2
(xIi−xIj )2

(5)

0.0 0.01 0.1 0.2 0.4 0.6 0.8 1.0

0.6

0.8

1.0

1.2

1.4

1.6
H divergences

Theorem 1 [Ben-David et al., 2010]
Let H be a hypothesis space. Denote by εs and εu the generalization errors on
Ds and Du, then for every h ∈ H:

εu(h) ≤εs(h) + d̂H(Ds ,Du) + λ. (6)



Introduction Method Experiment References

JRS versus MMD

MMD2(P,Q) = ‖µP − µQ‖
2
RKHS = ‖µP‖

2
RKHS + ‖µQ‖

2
RKHS − 2〈µP, µQ〉RKHS (7)
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0.30
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JRD(α@1) 0.506(0.013) 0.310(0.006) 0.934(0.004)
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Kernel Choice

Kernel k(x, x′)

Gaussian exp(− (x−x′)2

σ2 )

Laplace exp(− ‖x−x′‖1
σ

)
degree-p Inhomogeneous polynomial kernel (x · x′ + 1)p

Kernel inducing MGF exp(x · x′)

k(x, x′) Recall@1(%) Recall@2(%) Recall@4(%) Recall@8(%)

exp(− (x−x′)2

σ2 ) (α@1) 67.9 78.5 86.1 91.2

exp(− ‖x−x′‖1
σ

) (α@1) 68.1 78.2 86.4 91.8

(x · x′ + 1)2 (α@1e-3) 66.1 77.0 85.3 90.9
(x · x′ + 1)5 (α@1e-3) 65.2 76.2 86.4 90.7
exp(x · x′) (α@1e-3) 66.1 76.7 85.4 91.1

Source Code: https://github.com/YangLin122/JRD
Contact Email: chu xu@pku.edu.cn
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