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Training Deep Neural Networks

Challenge: nonconvex optimization problem
@ converge to local minimum with sub-optimal generalization
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Training Deep Neural Networks

Challenge: nonconvex optimization problem
@ converge to local minimum with sub-optimal generalization

This work:
@ how to find a local minimum with better generalization

Idea:
@ restricting search space leads to better generalization

Method:
@ guided functional gradient training (guide restricts search space)
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Problem Formulation

Supervised learning:

X,y)€S

f = arg min {; > L(f(8; ), y) + R(G)] .
(

X input

y: output

f(6; x): vector function to predict y from x.

0: model parameter.

S: training data

L: loss function

R(0): regularizer such as weight-decay A|||3

Example:
@ K-class classification where y € {1,2,..., K}
@ f(6; x) is K-dimensional, linked to conditional probabilities
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GULF: GUided Learning through Functional gradient

General GULF Procedure (f: model we are training):
@ (Step 1) Generate a guide function f*

e apply functional gradient to reduce the loss of the current model f,
e f*is an improvement over f in terms of loss but not too far from f.

@ (Step 2) Move the model f towards the guide function f*

@ using SGD according to some distance measure.
@ guide serves as a restriction of model parameter search space
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General GULF Procedure (f: model we are training):
@ (Step 1) Generate a guide function f*

e apply functional gradient to reduce the loss of the current model f,
e f*is an improvement over f in terms of loss but not too far from f.

@ (Step 2) Move the model f towards the guide function f*

@ using SGD according to some distance measure.
@ guide serves as a restriction of model parameter search space

Motivation:

@ functional gradient learning of additive models in gradient boosting
(Friedman, 2001), known to have good generalization

@ natural idea: use functional gradient learning to guide SGD

Result:
@ worse training error but better test error
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Step 1: Move Guide Ahead

We formulate Step 1 as

f*(x,y):=argmin Dn(q.f(x))  +aVL/(f() q|, (1)
q —_— —_———

guide near previous model functional gradient

where « is a meta-parameter, and the Bregman divergence Dy, is
defined by

Dp(u, v) = h(u) — h(v) — Vh(v) " (u - v).
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We formulate Step 1 as

f*(x,y):=argmin Dn(q.f(x))  +aVL/(f() q|, (1)
q —_— —_———

guide near previous model functional gradient

where « is a meta-parameter, and the Bregman divergence Dy, is
defined by

Dp(u, v) = h(u) — h(v) — Vh(v) " (u - v).

(1) is equivalent to mirror descent in function space.

Vh(f'(x,y)) =Vh(  f(x) )—a VL/(f(x)) . )
SN—— ~~~ ——
new guide previous model functional gradient
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Step 2: Following the Guide

Update network parameter 6 to reduce

(Dn(f(8; x), f*(X,Y))>(X7y)€S+ R(f) (3)
next model near guide regularizer
with SGD repeatedly to improve model f(0; -):
0 0%y | (Da(f(O:X), F (X)) s + RO, @)

where B is a mini-batch sampled from a training set S.
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Step 2: Following the Guide

Update network parameter 6 to reduce

(Dn(f(8; x), f*(X,Y))>(X7y)€S+ R(f) (3)
next model near guide regularizer
with SGD repeatedly to improve model f(0; -):
0 0%y | (Da(f(O:X), F (X)) s + RO, @)

where B is a mini-batch sampled from a training set S. Remarks:

@ f(6;-): move towards guide function f* in Bregman divergence

@ R(0): regularization term

@ f*(x,y): guide to restrict SGD search space — better generalization

Motivation 6/12



Convergence Result

Define a-regularized loss

£a0) = (LHBX).9)) g ppcs + ~RUO) ®)

Theorem

Under apporiate assumptions, consider the GULF algorithm with a sufficiently
small o and 7.
Assume that 0.1 is an improvement of 6; with respect to minimizing

Qu(6) = (D(F(0: ). (X, Y))) s + FLO)

so that Qi(0r11) < Qi(0: — nV Q:(6:)), then
GULF finds a local minimum of £,,(-):

Vo (6;) — 0.

v
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GULF is very different from standard training of a-regularized loss.
@ better generalization from guide to restrict the search space
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GULF is very different from standard training of a-regularized loss.
@ better generalization from guide to restrict the search space

For h = L,(f) with cross-entropy loss for classification, Step 2
becomes self-distillation parameter update:

0 0—nVo((1—a) L(fy,prob(fy)) +a Ly(f) ),
N——— — (

distillation with old model training loss

Y)ES
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GULF is very different from standard training of a-regularized loss.
@ better generalization from guide to restrict the search space

For h = L,(f) with cross-entropy loss for classification, Step 2
becomes self-distillation parameter update:

0 —60—nVe((1—0a) Lfyprob(fy)) +a Ly(f) ) es

distillation with old model training loss

Our result gives a convergence proof of self-distillation, and

generalizes it to other loss functions.
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Empirical Results

Methods compared:

@ (ini:random) GULF starting with random initialization

@ (ini:base) GULF starting with initialization by regular training
@ (base-\/«) standard training with a-regularized loss

@ (base-loop) standard training with learning rate resets

@ label-smoothing: use noisy label
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Empirical Results

Methods compared:

@ (ini:random) GULF starting with random initialization

@ (ini:base) GULF starting with initialization by regular training
@ (base-\/«) standard training with a-regularized loss

@ (base-loop) standard training with learning rate resets

@ label-smoothing: use noisy label

First three converge to local minimum solutions of a-regularized loss.
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C10 | C100 SVHN

1 base model | 6.42 | 30.90 | 1.86 | 1.64
2 baselines base-\/« 6.60 | 30.24 | 1.78 | 1.67
3 base-loop 6.20 | 30.09 | 1.93 | 1.53
4 label smooth | 6.66 | 30.52 | 1.71 | 1.60
5 ini:random 591 | 28.83 | 1.71 | 1.53
6 GULF2 ini:base 5.75 | 29.12 | 1.65 | 1.56

Table: Test error (%). Median of 3 runs. Resnet-28 (0.4M parameters) for
CIFAR10/100, and WRN-16-4 (2.7M parameters) for SVHN. Two numbers for
SVHN are without and with dropout.
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GULF2

O wWN =

Table: Test error (%). Median of 3 runs. Resnet-28 (0.4M parameters) for
CIFAR10/100, and WRN-16-4 (2.7M parameters) for SVHN. Two numbers for
SVHN are without and with dropout.

Similar results with larger models and on imagenet.
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Analysis: worse training loss but better generalization
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Figure: Test loss in relation to training loss. The arrows indicate the direction
of time flow. CIFAR100. ResNet-28.

GULF solution properties:
@ worse training loss but better test loss (better generalization)
o different weight-decay behavior in regularizer
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Background:
@ Nonconvex optimization stuck in local minimum
@ Want to find a local minimum with better generalization

Method:
@ Guided learning through successive functional gradient optimization
@ Find local solution with worse training loss but better generalization

Why:
@ Restricted search space — better generalization

Our method generalizes self-distillation.
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