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Training Deep Neural Networks

Challenge: nonconvex optimization problem
converge to local minimum with sub-optimal generalization

This work:
how to find a local minimum with better generalization

Idea:
restricting search space leads to better generalization

Method:
guided functional gradient training (guide restricts search space)
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Problem Formulation

Supervised learning:

θ̂ = arg min
θ

 1
|S|

∑
(x ,y)∈S

L(f (θ; x), y) + R(θ)

 .
x : input
y : output
f (θ; x): vector function to predict y from x .
θ: model parameter.
S: training data
L: loss function
R(θ): regularizer such as weight-decay λ‖θ‖22

Example:
K -class classification where y ∈ {1,2, . . . ,K}
f (θ; x) is K -dimensional, linked to conditional probabilities
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GULF: GUided Learning through Functional gradient

General GULF Procedure (f : model we are training):
(Step 1) Generate a guide function f ∗

apply functional gradient to reduce the loss of the current model f ,
f ∗ is an improvement over f in terms of loss but not too far from f .

(Step 2) Move the model f towards the guide function f ∗

using SGD according to some distance measure.
guide serves as a restriction of model parameter search space

Motivation:
functional gradient learning of additive models in gradient boosting
(Friedman, 2001), known to have good generalization
natural idea: use functional gradient learning to guide SGD

Result:
worse training error but better test error
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Step 1: Move Guide Ahead

We formulate Step 1 as

f ∗(x ,y):=argmin
q

 Dh(q,f (x))︸ ︷︷ ︸
guide near previous model

+α∇Ly (f (x))>q︸ ︷︷ ︸
functional gradient

, (1)

where α is a meta-parameter, and the Bregman divergence Dh is
defined by

Dh(u, v) = h(u)− h(v)−∇h(v)>(u − v).

(1) is equivalent to mirror descent in function space.

∇h(f ∗(x , y)︸ ︷︷ ︸
new guide

) = ∇h( f (x)︸︷︷︸
previous model

)− α ∇Ly (f (x))︸ ︷︷ ︸
functional gradient

. (2)
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Step 2: Following the Guide

Update network parameter θ to reduce〈
Dh(f (θ; x), f ∗(x , y))

〉
(x ,y)∈S︸ ︷︷ ︸

next model near guide

+ R(f )︸︷︷︸
regularizer

(3)

with SGD repeatedly to improve model f (θ; ·):

θ ← θ − η∇θ
[〈

Dh(f (θ; x), f ∗(x , y))
〉
(x ,y)∈B + R(θ)

]
, (4)

where B is a mini-batch sampled from a training set S.

Remarks:
f (θ; ·): move towards guide function f ∗ in Bregman divergence
R(θ): regularization term
f ∗(x , y): guide to restrict SGD search space→ better generalization
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Convergence Result

Define α-regularized loss

`α(θ) :=
〈
L (f (θ; x), y)

〉
(x ,y)∈S +

1
α

R(θ). (5)

Theorem

Under apporiate assumptions, consider the GULF algorithm with a sufficiently
small α and η.
Assume that θt+1 is an improvement of θt with respect to minimizing

Qt(θ) :=
〈
Dh(f (θ; x), f ∗(x , y))

〉
(x,y)∈S + R(θ)

so that Qt(θt+1) ≤ Qt(θt − η∇Qt(θt)), then
GULF finds a local minimum of `α(·):

∇`α(θt)→ 0.
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Remarks

GULF is very different from standard training of α-regularized loss.
better generalization from guide to restrict the search space

For h = Ly (f ) with cross-entropy loss for classification, Step 2
becomes self-distillation parameter update:

θ ← θ − η∇θ
〈
(1− α) L(fθ, prob(fθt ))︸ ︷︷ ︸

distillation with old model

+α Ly (fθ)︸ ︷︷ ︸
training loss

〉
(x ,y)∈S

Our result gives a convergence proof of self-distillation, and

generalizes it to other loss functions.
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Empirical Results

Methods compared:
(ini:random) GULF starting with random initialization
(ini:base) GULF starting with initialization by regular training
(base-λ/α) standard training with α-regularized loss
(base-loop) standard training with learning rate resets
label-smoothing: use noisy label

First three converge to local minimum solutions of α-regularized loss.
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Result

C10 C100 SVHN
1

baselines

base model 6.42 30.90 1.86 1.64
2 base-λ/α 6.60 30.24 1.78 1.67
3 base-loop 6.20 30.09 1.93 1.53
4 label smooth 6.66 30.52 1.71 1.60
5 GULF2 ini:random 5.91 28.83 1.71 1.53
6 ini:base 5.75 29.12 1.65 1.56

Table: Test error (%). Median of 3 runs. Resnet-28 (0.4M parameters) for
CIFAR10/100, and WRN-16-4 (2.7M parameters) for SVHN. Two numbers for
SVHN are without and with dropout.

Similar results with larger models and on imagenet.
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Analysis: worse training loss but better generalization
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(a) GULF2
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(b) Regular training
Figure: Test loss in relation to training loss. The arrows indicate the direction
of time flow. CIFAR100. ResNet-28.

GULF solution properties:
worse training loss but better test loss (better generalization)
different weight-decay behavior in regularizer
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Summary

Background:
Nonconvex optimization stuck in local minimum
Want to find a local minimum with better generalization

Method:
Guided learning through successive functional gradient optimization
Find local solution with worse training loss but better generalization

Why:
Restricted search space→ better generalization

Our method generalizes self-distillation.
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