® o
Differentiable Product Quantization
for Learning Compact Embedding Layers

Ting Chen (Google Research) .
Lala Li (Google Research)
Yizhou Sun (UCLA) o’

® i .

N -
What's embedding?

And why does it need to be compressed?

Embedding: continuous vector representations of symbols

Embedding layer is commonly used in many NLP and other
applications that deal with discrete symbols.

Class
Label

Sentence 1 Sentence 2

Country and Capital Vectors Projected by PCA

Devlin et al’'18

Chi

rar

Mikolov et al’13

o [

Chen et al'17

-
®

a. $'
®

L

(a) Input: Karate Graph (b) Output: Representation

Perozzi et al’'14

Existing embedding approach
Maintains an embedding table where each row corresponds to a
symbol, and use table lookup to retrieve the embedding.

This is equivalent to

e Represent each symbol with a “one-hot” code vector

o Apply a linear/affine transformation on top
d

N
[o[1]oJoJofofo].. | o y

“One-hot” vector for a symbol
(only 1 out-of-N bit is set 1) -

Embedding Matrix/Table

Issues with the existing method

The number of parameters grows linearly with the number of
symbols.

e Model size (physical storage).

e Redundancy
o Lots of symbols with only a few observations (e.g. Zipf’'s law).
o Many symbols share similar semantics (e.g. compositionality).

How can we compress an
embedding table?

In an End-to-end fashion.

K-way D-dimensional Discrete Code

e The mainidea is to compose embeddings from a small set of
basis ones, by leveraging semantic similarities among symbols.
e Instead of using “one-hot” codes to encode symbols, we

propose to use D-dimensional discrete codes, each dimension
has K choices.

» E
o et
a

=4
i

KD code: (5-1-3-7) (5-1-3-9)

(‘|>-5-2-8)

Ting Chen, Martin Renqiang Min, and Yizhou Sun. "Learning K-way D-dimensional Discrete Codes for Compact Embedding Representations.” ICML, 2018.

KD encoding framework

Instead of lookup the embedding vector in a table, we look up the
codes, retrieve their embeddings, and use them to compose the
final embedding vector.

Symbol Symbol
Lookup Lookup
“One-hot” (NGO ONEN0 KD code 01532
vector
Embedding Embedding
Lookup Function
0.7 0.3 1.3 0.5 ... 0.02 0.7 03 13 05 ... 0.02
(a) “one-hot” encoding (b) KD encoding

But, where do KD codes come from?

The Proposed DPQ framework

DPQ compress a raw embedding Q into discrete codes
C, and construct the final embedding matrix H.

D Groups - a: D Groups
== =y == R [
: o o
: K ! Key Matrix: Value Matrix K
o1 Ky v
; R 4L
. D Groups
. e T T 1T
: I S L0
. | | | | [|
. | | I | [R |
[NEn
: Query Matrix L ‘ Result Matrix
: IorQr i ® Codebook ® H
- ™| (Raw Embedding T (Constructed n
| | A i
: Tablei) : Discretization | | | | | Index & Concatenation Embeciding Table)
I (Eq. (1)) Fy (Eq. (2))
| | | | 7 abe i f
| I | | | I I |
| I 1 | | S |

The Proposed DPQ framework

Discretization function (training only)

D Groups |

T
|
|
|
| | |

1 1 I !
Query Matrix

: ! i Q I - L B
- M| (Raw Embedding @9
- | !
Tablﬁl Discretization
(Eq. (1))

ol |

We divide the embedding space into multiple groups
similar to product quantization. For each,

Cz(-j) = arg min dist (ng) . Kg))
k

The Proposed DPQ framework

Reverse-discretization function

D Groups

T T T T
l l | I

Value Matrlx
A

Index & Concatenation

(Eq. (2))

Result Matrix
H
(Constructed
Embedding Table)

The final embedding is a concatenation of
sub-vectors from each group.

((D
[V(u)’ Vj(g)a o,V (D))

Inference time only needs code book and value matrix

Algorithm 1 Inference of embedding for i-th token.
Require: V € REXPx(@/D) C ¢ {1,..., K}™*P
for j € {1,...,D} do
h’z(j) V(]).
end for
return concatenate(h(l) hgz), iy hED))

Two DPQ variants

Discretization function is not differentiable, we provide
two approximations (variants):

- (4) KO
DPQ-SX Cz(-J)=argmax exp({Q;”, Ky))

) Tl i
k) ppQvqQ C;”/ =argmin ||Q,;” — K;”||
C S exp(QP, KD)) K *

Forward pass:

Forward pass: Backward pass: use the closest key to approximate the query

use argmax over k use softmax to approximate argmax
, , K0
C,(/) E.(]) 0)

: i Q,.O) Backward pass:

N
N
N
\\
\
\
N
0 * e use the original query
A ch = aig
K1 st e il
o~ B
/. :
’ :
’
’
/.
’
.

k=123 K k=123 K ; K}”é
(a) Softmax-based (DPQ-SX) (b) Centroid-based (DPQ-VQ)

Figure 2. Tllustration of two types of approximation to enable differentiability in DPQ.

DPQ module is end2end differentiable

Main benefit: DPQ can be plugged into any differentiable neural network
and learned end-to-end.

This means a few lines code change to use DPQ:

rt full_embed
b_layer = full_embed.FullEmbedding(vocab_size, emb_size)

X.\

output = full_emb_layer(inputs)

port dpqg
dpg_layer = dpq.DPQEmbedding(vocab_size, emb_size,
k, d, dpg_variant, share_subspace)

output = dpq_layer(inputs)

Implementation Details
Distance normalization.

Training with straight-through estimator can be unstable as the gradient is
approximated. We normalize distance in a mini-batch so that each centroid
will have a normalized distance distribution over batch samples.

Subspace-sharing.

To further reduce parameters, one can share parameters among the D
groups of Key/Value matrices.

How well does DPQ work?

How much can we compress, without
performance loss?

10 datasets across 3 language tasks

Task Dataset Vocab Size Tokenization Base Model
LM PTB 10,000 Words LSTM-based models from (Zaremba

Wikitext-2 33,278 ’ et al., 2014), three model sizes

IWSLT15 (En-V1) 17,191 Words Seq2seq-based model from (Luong et al.,
NMT IWSLTI15 (Vi-En) 7,709 ' 2017)

WMTI19 (En-De) 32,000 Sub-words Transformer Base in (Vaswani et al.,

2017)

AG News 69,322

Yahoo! Ans. 477,522 One hidden layer after mean pooling of
TextC DBpedia 612,530 Words word vectors, similar to fastText

Yelp P 246,739 from (Joulin et al., 2017)

Yelp F 268,414

Table 2. Datasets and models used in our experiments. More details in Appendix B.

Evaluation Metrics
Task performance metrics:

e Perplexity score for LM tasks
e BLEU score for NMT tasks
e Accuracy for text classification tasks.

Compression Ratio:

of bits used in the full embedding table

Che= # of bits used in compressed model for inference

Compared to full embedding baseline
We achieve 14-163X compression, without performance
loss.

Task Metric Dataset Baseline DPQ-SX | (Compr. RatioT) | DPQ-VQ (Compr. Ratio?)
PTB 83.4 83.2 (163.2) 83.3 (58.7)
M PPLE Wikitext-2 95.6 95.0 (59.3) 95.9 (95.3)
IWSLT15 (En-Vi) 254 25.3 (86.2) 25.3 (16.1)
NMT BLEUt IWSLT15 (Vi-En) 23.0 23.1 (72.0) 225 (14.1)
WMTI19 (En-De) 38.8 38.8 (18.0) 38.7 (18.2)
AG News 92.6 92.5 (19.3) 92.6 (24.0)
Yahoo! Ans. 69.4 69.6 (48.2) 69.2 (19.2)
TextC Acc(%)T DBpedia 98.1 98.1 (24.1) 98.1 (38.5)
Yelp P 93.9 94.2 (38.5) 93.9 (24.0)
Yelp F 60.3 60.1 (48.2) 60.2 (24.1)

Table 3. Comparisons of DPQ variants vs. the full embedding baseline on ten datasets across three tasks. We use | to denote the lower the
better, in contrast, T means the higher the better.

Compared to other compression techniques
e DPQ is better than low-rank factorization.

e DPQ is better than post-training quantization.

Method PPL|| Compr. Ratiof
Full 83.4 1.0
Scalar quantization (8 bits) 84.1 4.0
Scalar quantization (6 bits) 87.7 5.3
Scalar quantization (4 bits) 92.9 8.3
Product quantization(64x325) 84.0 8.3
Product quantization(128x325) 83.7 6.7
Product quantization(256x325) 83.7 5:3
Low-rank (5X) 84.8 5.0
Low-rank (10X) 85.5 10.2
Ours (DPQ-VQ) 83.3 58.7
Ours (DPQ-SX) 82.0 \ 82.9

Table 5. Comparison of DPQ against traditional embedding com-
pression techniques on the PTB LM task (medium-sized LSTM).

Dataset AG News Yahoo! DBPedia Yelp P Yelp F
Full 926(1.0) 694 (1.0) 98.1(1.0) 939(1.0) 60.3(1.0)
Low-rank(10x) 91.4(10.4) 69.5(10.2) 97.7(10.3) 924 (10.4) 57.8(10.3)
Low-rank(20x) 91.5(21.4) 69.1(21.5) 97.9(21.3) 924 (21.5) 57.3(21.4)
(Chenetal,2018b) 91.6(53.3) 69.5(31.7) 98.0(48.4) 93.1(48.6) 59.0(54.4)
DPQ-VQ 92.6 (24.0) 69.2(19.2) 98.1(38.5) 93.9(24.0) 60.2(24.1)
DPQ-SX 92.5(19.3) 69.6(48.2) 98.1(24.1) 94.2(38.5) 60.1(48.2)

Compared to other compression techniques

e DPQ provides better compression rates than other
discrete code based approaches, and can be trained
end-to-end in one-stage!

Small Medium Large
Method PPL, CRtT PPL| CRt PPL| CR?
Full 114.5 1 83.4 1 78.7 1

Shu’17 108.0 438 84.9 12.5 80.7 18.5
Chen’18 108.5 4.8 89.0 12.5 86.4 18.5
Chen’18+ 107.8 4.8 83.1 1223 “TL1 18.5

DPQ-SX 1058 855 82.0 829 785 2383
DPQ-VQ 1065 51.1 833 587 795 2383

Table 4. Comparison of DPQ against recently proposed embed-
ding compression techniques on the PTB LM task (LSTMs with
three model sizes are studied). Metrics are perplexity (PPL) and
compression ratio (CR).

And, of course, BERT

e We simply replace BERT embedding table with ours, No
hyper-parameter tuning.

e We pre-train BERT-base (Devlin et al., 2018) on 512-token sequences
for 1M iterations with batch size 1024.

Embeddings CR Squad 1.1 Squad 2.0 CoLA MNLI MRPC XNLI
Full 1.0 90.1+£0.1/83.1+£0.3 78.840.6/75.5+£0.6 80.6+0.7 84.3+0.1 859+0.5 53.5+04
DPQ-SX 37.0 90.0+0.1/83.0+0.2 78.740.5/75.4+0.5 80.2+0.6 83.74+0.2 85.1+£0.6 53.440.1

Table 7. Effect of using DPQ on BERT. DPQ gives a compression ratio of 37x on the embedding table while the model’s performance on
downstream tasks remains competitive.

Conclusion

We present DPQ for end-to-end embedding table compression.
DPQ can serve as a drop-in replacement for existing embedding layer.

DPQ achieves 14-163X compression ratios of embedding table for a bunch
of language tasks, at no or negligible performance cost.

Code at: github.com/chentingpc/dpq_embedding_compression

https://github.com/chentingpc/dpq_embedding_compression

