
Ting Chen (Google Research)
Lala Li (Google Research)
Yizhou Sun (UCLA)

Differentiable Product Quantization
for Learning Compact Embedding Layers

And why does it need to be compressed?

What’s embedding?

Embedding: continuous vector representations of symbols

Embedding layer is commonly used in many NLP and other
applications that deal with discrete symbols.

Devlin et al’18

Existing embedding approach
Maintains an embedding table where each row corresponds to a
symbol, and use table lookup to retrieve the embedding.

This is equivalent to

● Represent each symbol with a “one-hot” code vector
● Apply a linear/affine transformation on top

Issues with the existing method
The number of parameters grows linearly with the number of
symbols.

● Model size (physical storage).
● Redundancy

○ Lots of symbols with only a few observations (e.g. Zipf’s law).
○ Many symbols share similar semantics (e.g. compositionality).

In an End-to-end fashion.

How can we compress an
embedding table?

K-way D-dimensional Discrete Code
● The main idea is to compose embeddings from a small set of

basis ones, by leveraging semantic similarities among symbols.
● Instead of using “one-hot” codes to encode symbols, we

propose to use D-dimensional discrete codes, each dimension
has K choices.

Ting Chen, Martin Renqiang Min, and Yizhou Sun. "Learning K-way D-dimensional Discrete Codes for Compact Embedding Representations." ICML, 2018.

KD encoding framework
Instead of lookup the embedding vector in a table, we look up the
codes, retrieve their embeddings, and use them to compose the
final embedding vector.

But, where do KD codes come from?

The Proposed DPQ framework
DPQ compress a raw embedding Q into discrete codes
C, and construct the final embedding matrix H.

The Proposed DPQ framework
Discretization function (training only)

We divide the embedding space into multiple groups
similar to product quantization. For each,

The Proposed DPQ framework
Reverse-discretization function

The final embedding is a concatenation of
sub-vectors from each group.

Inference time only needs code book and value matrix

Two DPQ variants
Discretization function is not differentiable, we provide
two approximations (variants):

DPQ-SX DPQ-VQ

DPQ module is end2end differentiable
Main benefit: DPQ can be plugged into any differentiable neural network
and learned end-to-end.

This means a few lines code change to use DPQ:

Implementation Details
Distance normalization.

Training with straight-through estimator can be unstable as the gradient is
approximated. We normalize distance in a mini-batch so that each centroid
will have a normalized distance distribution over batch samples.

Subspace-sharing.

To further reduce parameters, one can share parameters among the D
groups of Key/Value matrices.

How much can we compress, without
performance loss?

How well does DPQ work?

P 15

10 datasets across 3 language tasks

Evaluation Metrics
Task performance metrics:

● Perplexity score for LM tasks
● BLEU score for NMT tasks
● Accuracy for text classification tasks.

Compression Ratio:

Compared to full embedding baseline
We achieve 14-163X compression, without performance
loss.

Compared to other compression techniques
● DPQ is better than low-rank factorization.
● DPQ is better than post-training quantization.

Compared to other compression techniques
● DPQ provides better compression rates than other

discrete code based approaches, and can be trained
end-to-end in one-stage!

And, of course, BERT
● We simply replace BERT embedding table with ours, No

hyper-parameter tuning.
● We pre-train BERT-base (Devlin et al., 2018) on 512-token sequences

for 1M iterations with batch size 1024.

Conclusion
We present DPQ for end-to-end embedding table compression.

DPQ can serve as a drop-in replacement for existing embedding layer.

DPQ achieves 14-163X compression ratios of embedding table for a bunch
of language tasks, at no or negligible performance cost.

Code at: github.com/chentingpc/dpq_embedding_compression

https://github.com/chentingpc/dpq_embedding_compression

