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Introduction

How much connectedness is there in the bottom of a neural network’s loss
function?

Connection task: Given two low-lying points (e.g., local minima),
connect them by a possibly low lying curve.
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Low loss paths: existing approaches

Experimental [Garipov et al.'18, Draxler et al.'18]
Optimize the path numerically.

+ Generally applicable
+ Simple paths (e.g. two line segments)

— No explanation why it works

Theoretical [Freeman&Bruna'16, Nguyen'l9, Kuditipudi et al."19]
Prove existence of low loss paths.

+ Explain connectedness
— Relatively complex paths

— Require special assumptions on network
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This work: a panel of methods

@ Generally applicable

@ Having a theoretical foundation

@ Varying simplicity vs. performance (low loss)
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Two-layer network: the distributional point of view

Two-layer network:

n
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Is an “ensemble of hidden neurons”:
7,(xi©) = [ ax; 0)p(a0)

with distribution p =1 57 | 6p,
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Connection by distribution-preserving paths

Key assumption: networks A and B trained under similar conditions have
approximately the same distribution p of their hidden neurons 0;4, 9,’-3.

Choose connection path W(t) = (v;(t)) so that
Q For each i, 1;(t = 0) = 62 and y;(t =1) = 68
@ Foreach t, Y¥(t) ~p

Then the network output is approximately t-independent, and loss is
constant
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Linear connection

The simplest possible connection:

Y(t) = (1 —t)0” + toB

+ 1f 84,08 ~ p, then () preserves the mean p = [ Odp
— 1)(t) does not preserve covariance [(6 — p)(6 — p)" dp
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The Gaussian-preserving flow

Proposition

If 0°,08 are i.i.d. vectors with the same centered multivariate Gaussian
distribution, then for any t € R

P(t) = cos(5t)0” +sin(Zt)0°

has the same distribution, and also 1(0) = 64,4 (1) = 8
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Arc connection

W(t) = p+ cos(5t)(8" — p) +sin(51)(8° — )

+ Preserves shifted Gaussian p with mean u

+ For a general non-Gaussian p with mean g, preserves mean and
covariance of p
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Linear and Arc connections

Connected distributions

Linear: distribution
“squeezed”

Arc: distribution
preserved

Xy

Middle of path

cos(m/a)X + sin(r/a)Y
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Distribution-preserving deformations: general p

For a general non-Gaussian distribution p, if v maps p to N'(0, /), then the
path

P(t) = v cos(Et)v(07) + sin(Zt)v(6°)]

is p-preserving
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Connections using a normalizing map

(1) 6°
o |

. ~B ~B
t)gnormal + Sln(%t)onormal % onormal
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Flow connection

Learn v to map from target distribution p to A/(0, /) by using Normalizing
Flow [Dinh et al."16, Kingma et al.’16]:

o (0)
o907

Eg~p log [ 6))| det u — max,
v

where p is the density of AV/(0,/)
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Bijection connection

Yw(t,04,08) = yﬁ/l[cos(gt)uw(@A) + sin(%t)yw(@B)]

Train vy to have low-loss path between any optima, @4 and ©8, with loss
A oB
l( W) = Et~U(O,1)76A~p7OB~pL(qvbW(t? © ; © ))7

where L(W) is the initial loss with which we train the models ©4 and ©58

14 /28



Learnable connection methods

For both Flow and Bijection connections:

@ We train learnable connection methods using a dataset of trained
model weights ©;

@ We use the networks RealNVP [Dinh et al."16] and IAF [ Kingma et
al.'16] as v-transforms.

The result is a global connection model: once trained, it can be applied to
any pair of local minima @4, ©8
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Connection using Optimal Transportation (OT)

Stage 1: connect {8717, to {6P}" . as
unordered sets
@ Use OT to find a bijective map from
samples O,A to nearby samples 05(,-)

@ Interpolate linearly between respective
samples

Stage 2: permute the neurons one-by-one to get the right order

16 /28



Connections using Weight Adjustment (WA)

A two-layer network: Y = Whop(W1X)

Given two two-layer networks, A and B:

o Connect the first layers Wi (t) = ¢(t, W, W) with any considered
connection method (e.g. Linear, Arc, OT).

@ Adjust the second layer by pseudo-inversion to keep the output
+
possibly t-independent: Wh(t) =Y {qﬁ( Wl(t)X)]

We consider: Linear + WA, Arc + WA and OT + WA.

17/28



Overview of the methods
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Linear + - low low high
Arc + - low low high
Flow — 4+ medium medium high
Bijection — 4 medium medium low
oT — — medium high low
WA based — — high high low
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Experiments (two layer networks)

The worst accuracy (%) along the path for networks with 2000 hidden ReLU

units
MNIST CIFAR10
Methods train test train test
Linear 96.54 £ 0.40 | 95.87 £0.40 | 32.09+1.33 | 30.34 +1.52
Arc 97.89+£0.11 | 97.03+£0.14 | 49.97 +0.86 | 41.34 +1.39
IAF flow 96.34 £ 0.54 | 95.80 £0.45 | — -
RealNVP bijection || 98.50 +-0.09 | 97.53 4 0.11 | 63.46+0.27 | 53.94 £ 0.95
Linear + WA 98.76 £ 0.01 | 97.86 +0.05 | 52.63+0.59 | 57.66 +0.26
Arc + WA 98.75+0.01 | 97.86+0.05 | 58.77 +0.32 | 57.88 +:0.24
oT 98.78 £0.01 | 97.87 +0.04 | 66.19+0.23 | 56.49 -+ 0.46
OT + WA 98.92+£0.01 | 97.91+0.03 | 67.02+0.12 | 58.96 +0.21
Garipov (3) 99.10+0.01 | 97.98+0.02 | 68.51+0.08 | 58.74 0.23
Garipov (5) 99.03+0.01 | 97.93+0.02 | 67.20+0.12 | 57.88 +0.32
| End Points | 99.14 +0.01 [ 98.01+0.03 [ 70.60 +-0.12 | 59.12 +0.26
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Connection of multi layer networks

An intermediate point @f(‘B on the path has head of network A attached
to tail of network B

AB AB
o) X %

e — ¢ Vmoﬂ)oﬂ)o

tail

We adjust the transitional layer WkAB using the Weight Adjustment
procedure, to preserve the output of the k'th layer of network A
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The full path: 04 — 058 - 048 — ... - 078 — ©°F
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AB
The transition ©,° — @k+1

° @AB and @k+1 differ only in layers k and kK + 1

e Connect ©78 to @k+1 like a two-layer network



Experiments. Three layer MLP

The worst accuracy (%) along the path for networks with 6144 and 2000 hidden

ReLU units

CIFAR10

Methods train test
Linear 47.81+0.76 | 38.384+0.84
Arc 60.60 £0.79 | 49.634+0.86
Linear + WA 60.93+0.25 | 51.87+0.24
Arc + WA 71.10+0.23 | 58.86 +0.29
oT 81.95+0.29 | 59.11 +0.46
OoT + WA 87.53+0.18 | 61.67 +0.49
Garipov (3) 94.56 +0.08 | 61.384+0.36
Garipov (5) 90.32 +0.06 | 60.754+0.32
‘ End Points ‘ 95.13+0.08 | 63.254+0.36




Convnets

For CNNs, connection methods work similarly to dense nets, but with
filters instead of neurons

Conv2FC1 VGG16
Methods train test train test
Linear + WA || 71.09+0.38 | 67.07£0.49 | 94.16 £0.38 | 87.55£0.41
Arc + WA 77.36+0.99 | 73.77+0.88 | 95.354+0.23 | 88.56 +0.28
Garipov (3) 85.104+0.25 | 80.95+0.16 | 99.6940.03 | 91.25+0.14
End Points 87.184+0.14 | 82.614+0.18 | 99.99 + 0. 91.67+0.10

Accuracy (%) of three layer convnet, Conv2FC1 and VGG16, on CIFARI10.
Conv2FC1 has 32 and 64 channels in convolution layers and ~ 3000 neurons in FC
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Experiments. VGG16

Test error (%) along the path for VGG16

test error (%)

VGG16
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WA-Ensembles

o Take m independently trained networks ©4, ©8 ¢, ..
o Take the tail of network © up to some layer k as a backbone;
@ Use WA to transform the other networks to have the same backbone;
@ Make ensemble with the common backbone.
eA
° SN e S oo N e
common backbone 4 7 7
-~ /( ©5B head \
X > o > ® > ® ° ° ° ° 5>y
©F¢ head /(
° > ® > > ®

Compared to the usual ensemble:
+ Smaller storage & complexity (thanks to common backbone);

— Lower accuracy (due to errors introduced by WA).
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Experiments. WA-Ensembles. VGG16

Test accuracy (%) of ensemble methods with respect to number of models.
@ WA(n): WA-ensemble with n layers in the head
@ Ind: usual ensemble — averaging of independent models (= WA(16))

VGG16 on CIFAR100
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Take away

@ Simple Arc modification noticeably improves the trivial Linear
connection.

e Optimal Transportation with Weight Adjustment based
connection method achieves low loss on par with direct numerical
optimization, but is more interpretable.

@ In WA-ensembles, a longer common backbone reduces amount of
computation at the cost of accuracy.
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