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Introduction

How much connectedness is there in the bottom of a neural network’s loss
function?

Connection task: Given two low-lying points (e.g., local minima),
connect them by a possibly low lying curve.
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Low loss paths: existing approaches

Experimental [Garipov et al.’18, Draxler et al.’18]
Optimize the path numerically.

+ Generally applicable

+ Simple paths (e.g. two line segments)

− No explanation why it works

Theoretical [Freeman&Bruna’16, Nguyen’19, Kuditipudi et al.’19]
Prove existence of low loss paths.

+ Explain connectedness

− Relatively complex paths

− Require special assumptions on network
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This work: a panel of methods

Generally applicable

Having a theoretical foundation

Varying simplicity vs. performance (low loss)
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Two-layer network: the distributional point of view

Two-layer network:

ŷn(x ; Θ) =
1

n

n∑
i=1

σ(x ;θi ), Θ = (θi )
n
i=1

with θi = (bi , l i , c i ) and σ(x ;θi ) = c iφ(〈l i , x〉+ bi )

Is an “ensemble of hidden neurons”:

ŷn(x ; Θ) =

∫
σ(x ;θ)p(dθ)

with distribution p = 1
n

∑n
i=1 δθi
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Connection by distribution-preserving paths

Key assumption: networks A and B trained under similar conditions have
approximately the same distribution p of their hidden neurons θA

i ,θ
B
i .

Choose connection path Ψ(t) = (ψi (t)) so that

1 For each i , ψi (t = 0) = θA
i and ψi (t = 1) = θB

i

2 For each t, ψ(t) ∼ p

Then the network output is approximately t-independent, and loss is
constant
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Linear connection

The simplest possible connection:

ψ(t) = (1− t)θA + tθB

+ If θA,θB ∼ p, then ψ(t) preserves the mean µ =
∫
θdp

− ψ(t) does not preserve covariance
∫

(θ − µ)(θ − µ)Tdp
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The Gaussian-preserving flow

Proposition

If θA,θB are i.i.d. vectors with the same centered multivariate Gaussian
distribution, then for any t ∈ R

ψ(t) = cos(π2 t)θA + sin(π2 t)θB

has the same distribution, and also ψ(0) = θA, ψ(1) = θB
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Arc connection

ψ(t) = µ + cos(π2 t)(θA − µ) + sin(π2 t)(θB − µ)

+ Preserves shifted Gaussian p with mean µ

+ For a general non-Gaussian p with mean µ, preserves mean and
covariance of p
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Linear and Arc connections

Linear: distribution
“squeezed”

Arc: distribution
preserved

Connected distributions Middle of path

X, Y 0.5X + 0.5Y

X, Y cos( /4)X + sin( /4)Y
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Distribution-preserving deformations: general p

For a general non-Gaussian distribution p, if ν maps p to N (0, I ), then the
path

ψ(t) = ν−1[cos(π2 t)ν(θA) + sin(π2 t)ν(θB)]

is p-preserving
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Connections using a normalizing map

θA ψ(t) θB

θ̃
A

normal cos(π2 t)θ̃
A

normal + sin(π2 t)θ̃
B

normal θ̃
B

normal

ν νν−1
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Flow connection

Learn ν to map from target distribution p to N (0, I ) by using Normalizing
Flow [Dinh et al.’16, Kingma et al.’16]:

Eθ∼p log
[
ρ(ν(θ))

∣∣ det ∂ν(θ)

∂θT

∣∣]→ max
ν
,

where ρ is the density of N (0, I )
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Bijection connection

ψW (t,ΘA,ΘB) = ν−1
W [cos(π2 t)νW (ΘA) + sin(π2 t)νW (ΘB)]

Train νW to have low-loss path between any optima, ΘA and ΘB , with loss

l(W ) = Et∼U(0,1),ΘA∼p,ΘB∼pL(ψW (t,ΘA,ΘB)),

where L(W ) is the initial loss with which we train the models ΘA and ΘB

14 / 28



Learnable connection methods

For both Flow and Bijection connections:

We train learnable connection methods using a dataset of trained
model weights Θ;

We use the networks RealNVP [Dinh et al.’16] and IAF [ Kingma et
al.’16] as ν-transforms.

The result is a global connection model: once trained, it can be applied to
any pair of local minima ΘA,ΘB
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Connection using Optimal Transportation (OT)

Stage 1: connect {θA
i }ni=1 to {θB

i }ni=1 as
unordered sets

Use OT to find a bijective map from
samples θA

i to nearby samples θB
π(i)

Interpolate linearly between respective
samples

Stage 2: permute the neurons one-by-one to get the right order
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Connections using Weight Adjustment (WA)

A two-layer network: Y = W2φ(W1X)

Given two two-layer networks, A and B:

Connect the first layers W1(t) = ψ(t,W A
1 ,W

B
1 ) with any considered

connection method (e.g. Linear, Arc, OT).

Adjust the second layer by pseudo-inversion to keep the output

possibly t-independent: W2(t) = Y
[
φ(W1(t)X)

]+

We consider: Linear + WA, Arc + WA and OT + WA.
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Overview of the methods
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Linear + − low low high
Arc + − low low high

Flow − + medium medium high
Bijection − + medium medium low

OT − − medium high low
WA based − − high high low
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Experiments (two layer networks)

The worst accuracy (%) along the path for networks with 2000 hidden ReLU

units

MNIST CIFAR10

Methods train test train test

Linear 96.54± 0.40 95.87± 0.40 32.09± 1.33 39.34± 1.52
Arc 97.89± 0.11 97.03± 0.14 49.97± 0.86 41.34± 1.39

IAF flow 96.34± 0.54 95.80± 0.45 − −
RealNVP bijection 98.50± 0.09 97.53± 0.11 63.46± 0.27 53.94± 0.95

Linear + WA 98.76± 0.01 97.86± 0.05 52.63± 0.59 57.66± 0.26
Arc + WA 98.75± 0.01 97.86± 0.05 58.77± 0.32 57.88± 0.24

OT 98.78± 0.01 97.87± 0.04 66.19± 0.23 56.49± 0.46
OT + WA 98.92± 0.01 97.91± 0.03 67.02± 0.12 58.96± 0.21

Garipov (3) 99.10± 0.01 97.98± 0.02 68.51± 0.08 58.74± 0.23
Garipov (5) 99.03± 0.01 97.93± 0.02 67.20± 0.12 57.88± 0.32

End Points 99.14± 0.01 98.01± 0.03 70.60± 0.12 59.12± 0.26
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Connection of multi layer networks

An intermediate point ΘAB
k on the path has head of network A attached

to tail of network B

• • • • • • •

ΘAB
4 x y

• − φ • • • • • • •

W A
5 W A

6 W A
7

W A
8

W B
1

W B
2 W B

3

W AB
4

tail

head

We adjust the transitional layer W AB
k using the Weight Adjustment

procedure, to preserve the output of the k ’th layer of network A
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The full path: ΘA → ΘAB
2 → ΘAB

3 → · · · → ΘAB
n → ΘB

• • •

ΘA x y

• • •

• • •

ΘAB
2 x y

• • •

• • •

ΘAB
3 x y

• • •

• • •

ΘB x y

• • •

W A
2 W A

3

W A
4W A

1

W A
3

W A
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W B
1
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2

W A
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W B
1

W B
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W B
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W B
2 W B

3 W B
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The transition ΘAB
k → ΘAB

k+1

ΘAB
k and ΘAB

k+1 differ only in layers k and k + 1

Connect ΘAB
k to ΘAB

k+1 like a two-layer network
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Experiments. Three layer MLP

The worst accuracy (%) along the path for networks with 6144 and 2000 hidden

ReLU units

CIFAR10

Methods train test

Linear 47.81± 0.76 38.38± 0.84
Arc 60.60± 0.79 49.63± 0.86

Linear + WA 60.93± 0.25 51.87± 0.24
Arc + WA 71.10± 0.23 58.86± 0.29

OT 81.95± 0.29 59.11± 0.46
OT + WA 87.53± 0.18 61.67± 0.49

Garipov (3) 94.56± 0.08 61.38± 0.36
Garipov (5) 90.32± 0.06 60.75± 0.32

End Points 95.13± 0.08 63.25± 0.36
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Convnets

For CNNs, connection methods work similarly to dense nets, but with
filters instead of neurons

Conv2FC1 VGG16

Methods train test train test

Linear + WA 71.09± 0.38 67.07± 0.49 94.16± 0.38 87.55± 0.41
Arc + WA 77.36± 0.99 73.77± 0.88 95.35± 0.23 88.56± 0.28

Garipov (3) 85.10± 0.25 80.95± 0.16 99.69± 0.03 91.25± 0.14

End Points 87.18± 0.14 82.61± 0.18 99.99± 0. 91.67± 0.10

Accuracy (%) of three layer convnet, Conv2FC1 and VGG16, on CIFAR10.

Conv2FC1 has 32 and 64 channels in convolution layers and ∼ 3000 neurons in FC
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Experiments. VGG16

Test error (%) along the path for VGG16
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WA-Ensembles

Take m independently trained networks ΘA,ΘB ,ΘC , ...

Take the tail of network ΘA up to some layer k as a backbone;

Use WA to transform the other networks to have the same backbone;

Make ensemble with the common backbone.

• • • •

x • • • • • • • y

• • • •

ΘA

ΘB head

ΘC head

common backbone

Compared to the usual ensemble:

+ Smaller storage & complexity (thanks to common backbone);

− Lower accuracy (due to errors introduced by WA).
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Experiments. WA-Ensembles. VGG16

Test accuracy (%) of ensemble methods with respect to number of models.

WA(n): WA-ensemble with n layers in the head

Ind: usual ensemble – averaging of independent models (≡ WA(16))
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Take away

Simple Arc modification noticeably improves the trivial Linear
connection.

Optimal Transportation with Weight Adjustment based
connection method achieves low loss on par with direct numerical
optimization, but is more interpretable.

In WA-ensembles, a longer common backbone reduces amount of
computation at the cost of accuracy.
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