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Clustering

Given unlabelled d-dimensional data points P = {p1, . . . , pn},
group similar ones together into k clusters

Which is a better clustering into k = 3 groups?



k-means metric

I Centers C = {c1, . . . , ck}
I cost(P,C ) =

∑
p∈P minc∈C d(p, c)2 =

∑
p∈P cost(p,C )
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p

cost(p, c3)

I Restricting C ⊆ P only loses a 2-factor in cost(P,C )

I NP-hard to find optimal solution [ADHP09, MNV09]
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Lloyd’s algo. [Llo82]: Heuristic alternating minimization

Given k initial centers (Remark: centers not necessarily from P)

Optimal assignment ←→ Optimal clustering
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Lloyd’s algo. [Llo82]: Heuristic alternating minimization

Given k initial centers (Remark: centers not necessarily from P)

Optimal assignment ←→ Optimal clustering

I Lloyd’s algorithm never worsens cost(P,C ) but has no
performance guarantees (local minimas)

I One way to get theoretic guarantees:

Seed with provably good initial centers



k-means++ initialization [AV07]

I Chooses k points from P: O(log k) apx. (in expectation)
I 1st center chosen uniformly at random from P

I D2-sampling: Pr[p] = cost(p,C)∑
p∈P cost(p,C)
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I Practically efficient: O(dnk) running time
I Exist instances where running k-means++ yield Ω(log k) apx.

with high probability in k [BR13, BJA16]

Cost to centers C
(updated at each step)
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What is known?

• Lloyd’s algorithm [Llo82]

• k-means++ [AV07]: O(log k) apx. in O(dnk) time

• LocalSearch++ [LS19]: O(1) apx. in O(dnk2 log log k) time

• Best known approximation factor [ANFSW19]: 6.357

• PTAS for fixed k [KSS10]

• PTAS for fixed d [CAKM19, FRS19]

• Local search [KMN+04]: (9 + ε)-approximation in poly-time

Practice

Theory

I Bi-criteria approximation [Wei16, ADK09]:
O(1)-approximation with O(k) cluster centers

I This work: O(dnk2) running time, O(1) approximation
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Outline of talk

I What we have discussed
I Clustering as a motivation
I Lloyd’s heuristic and k-means++ initialization
I Prior work

I What’s next
I Idea of bi-criteria algorithm and notion of settledness
I Idea of local search
I LocalSearch++: combining k-means++ with local search
I Key idea behind how we tighten analysis of LocalSearch++



Outline of talk

I What we have discussed
I Clustering as a motivation
I Lloyd’s heuristic and k-means++ initialization
I Prior work

I What’s next
I Idea of bi-criteria algorithm and notion of settledness
I Idea of local search
I LocalSearch++: combining k-means++ with local search
I Key idea behind how we tighten analysis of LocalSearch++



Bi-criteria [Wei16, ADK09] and settledness

I “Balls into bins” process
I k bins: Optimal k-clustering of points defined by OPTk

I O(k) balls: Sampled points in C

I A cluster Q is settled if cost(Q,C ) ≤ 10 · cost(Q,OPTk)

I Can show (with constant success probabilities):

I If not yet 20-apx., D2-sampling chooses from unsettled cluster
I If sample p from unsettled cluster Q, adding p makes Q settled

I After O(k) samples, cost(P,C ) ≤ 20 · cost(P,OPTk)
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Local search [KMN+04]

I Initialize arbitrary k points → C
I Repeat

I Pick arbitrary point p ∈ P
I If ∃q ∈ C such that cost(P,C \{q}∪{p}) improves cost, swap

I Polynomial number of iterations → O(1) approximation



Local search [KMN+04]

I Initialize arbitrary k points → C
I Repeat

I Pick arbitrary point p ∈ P
I If ∃q ∈ C such that cost(P,C \{q}∪{p}) improves cost, swap

I Polynomial number of iterations → O(1) approximation



Local search [KMN+04]

I Initialize arbitrary k points → C
I Repeat

I Pick arbitrary point p ∈ P
I If ∃q ∈ C such that cost(P,C \{q}∪{p}) improves cost, swap

I Polynomial number of iterations → O(1) approximation



Local search [KMN+04]

I Initialize arbitrary k points → C
I Repeat

I Pick arbitrary point p ∈ P
I If ∃q ∈ C such that cost(P,C \{q}∪{p}) improves cost, swap

I Polynomial number of iterations → O(1) approximation



Local search [KMN+04]

I Initialize arbitrary k points → C
I Repeat

I Pick arbitrary point p ∈ P
I If ∃q ∈ C such that cost(P,C \{q}∪{p}) improves cost, swap

I Polynomial number of iterations → O(1) approximation



LocalSearch++ [LS19]

I Initialize arbitrary k points → C from output of k-means++
I Repeat

I Pick arbitrary point p ∈ P using D2-sampling
I If ∃q ∈ C such that cost(P, {p}∪C \{q}) improves cost, swap

I Polynomial number of iterations → O(1) approximation
O(k log log k)



LocalSearch++ [LS19]: One step of analysis

I Lemma: In each step, cost decrease by factor of 1−Θ
(
1
k

)
with constant probability



LocalSearch++ [LS19]: One step of analysis

I Lemma: In each step, cost decrease by factor of 1−Θ
(
1
k

)
with constant probability

I Implication: After O(k) steps, approximation factor halves

O(log k)-apx. O
(
log k
2

)
-apx. . . . O

(
log k
2r

)
= O(1)-apx.

O(k)
steps

O(k)
steps

r = O(log log k) phases, totaling O(k log log k) steps

k-means++ is O(log k) apx. in expectation



LocalSearch++ [LS19]: Bounding cost decrease

I Match OPT centers c∗ ∈ C ∗ to candidate centers c ∈ C

C ∗ clusters

C clusters

M L

I If “D2-sampled left side” → swap with paired c ∈ C

I If “D2-sampled right side” → swap with “best” lonely c ∈ C

I Can show: Good probability to D2-sample a point such that
updating centers sufficiently decreases cost
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Structural insight: Few bad clusters

I Cluster Q is β-settled if cost(Q,C ) ≤ (β + 1) · cost(Q,OPT )
I Informal propositions

I If current clustering is α-approximate,

I There are O
(

k
3√α

)
3
√
α-unsettled clusters

I D2-sampling samples a point from an 3
√
α-unsettled cluster Q;

Adding this point to C makes Q 3
√
α-settled

I In each step, cost decrease by factor of 1−Θ
(

3
√
α
k

)

α-apx. α
2 -apx. . . . O

(
1
ε3

)
-apx.

O
(

k
3√α

)
steps

O
(

k
3
√
α/2

)
steps

O(logα) phases, totalling εk steps

k-means++ with Markov: α ≤ exp(k0.1) with high probability in k
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Summary

I Improved analysis of LocalSearch++
I Simple algorithm: k-means++, then local search
I Theoretic guarantees: εk local search steps yield O

(
1
ε3

)
-apx.

I Practical algorithm: Can yield ∼ 15% improvements compared
to without any local search steps [LS19]

I Structural analysis of clusters
I Go beyond worst-case analysis of k-means++
I After k-means++,

I Few clusters are unsettled
I Most clusters are “well-approximated”
I A few steps of local search can fix this
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