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Option Discovery

• We address the problem of option discovery

• Options (a.k.a. skills) are a predefined sequence of primitive actions
[Sutton et al. ‘99]

• Options were shown to improve both learning and exploration 

• Setting
• Not associated with any specific task

• Acquired without receiving any reward

• Important and challenging problem in RL



Contribution

• A new approach to option discovery with theoretical foundation
• Based on manifold analysis 

• The analysis includes novel results in manifold learning

• We propose an algorithm for option discovery
• Outperforms competing options



Graph Based Approach

• The finite domain is represented by a graph [Mahadevan ‘07] 

• Nodes - the states (𝕊 is the set of states)

• Edges - according to the state’s connectivity

• The graph is a discrete representation of a manifold
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D – Degree matrix
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The Proposed Algorithm

1. Compute the random walk matrix 𝑾 =
1

2
𝑰 −𝑴𝑫−1

2. Apply EVD to 𝑾 and obtain its left and right eigenvectors 𝜙𝑖 , ෨𝜙𝑖 , 
and its eigenvalues 𝜔𝑖

3. Construct 

4. Find the local maxima of 𝑓𝑡 𝑠 , denoted as 𝑠𝑜
𝑖

⊂ 𝕊

5. For each local maximum, 𝑠𝑜
𝑖

, build an option leading to it

𝑓𝑡: 𝕊 → ℝ , 𝑓𝑡 𝑠 = σ𝑖≥2𝜔𝑖
𝑡𝜙𝑖 𝑠 ෨𝜙𝑖

2 To be motivated 
later

𝑓𝑡 allows the identification of goal states



Demonstrating the Score Function

• 4Rooms [Sutton et al. ‘99]

• The local maxima of 𝑓𝑡 𝑠 are at states that are “far away” from all 
other states
• Corner states and bottleneck states

𝑓𝑡 𝑠 = ෍
𝑖≥2
𝜔𝑖
𝑡𝜙𝑖 𝑠 ෨𝜙𝑖
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Low pass 
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Experimental Results - Learning

Diffusion options (t=4) Eigenoptions Random walk

Normalized visitation during learning

* Further results in 
_paper

• Q learning 
[Watkins and Dayan, ‘92]

• Eigenoptions
[Machado et al. ‘17]



Experimental Results - Exploration

• Exploration
• Median number of steps between every two states [Machado et al. ‘17]

[Machado et al. ’17] [Jinnai et al. ‘19] 



Theoretical Analysis

• We use manifold learning results and concepts 
• Diffusion distance [Coifman and Laffon ‘06] 

• New concept – considering the entire spectrum [Cheng and Mishne ‘18]

• Comparison to existing work - eigenoptions [Machado et al. ‘17] and 
cover options [Jinnai et al. ‘19] 

• Use only the principal components instead of all/many

• Consider only one eigenvector at a time, instead of incorporating them 
together



Diffusion Distance

• Consider 𝑾𝑡 = ⋯ ⋯

Euclidean distance Diffusion distance

𝒘𝑙
𝑡

𝐷𝑡 𝑠, 𝑠′ = 𝒘𝑠
𝑡 −𝒘𝑠′

𝑡

𝑾 =
1

2
𝑰 −𝑴𝑫−1



Properties of the Score Function

Proposition 1

The function 𝑓𝑡: 𝕊 → ℝ can be expressed as

• 𝐷𝑡
2 𝑠, 𝑠′ 𝑠′∈𝕊 is the average diffusion distance between state 𝑠 and all 

other states

*See ICML paper for the proof

𝑓𝑡 𝑠 = 𝐷𝑡
2 𝑠, 𝑠′ 𝑠′∈𝕊 + 𝑐𝑜𝑛𝑠𝑡



Properties of the Score Function

Proposition 1

The function 𝑓𝑡: 𝕊 → ℝ can be expressed as

• Option discovery:  max 𝑓𝑡 𝑠 = max 𝐷𝑡
2 𝑠, 𝑠′ 𝑠′∈𝕊

Exploration benefits

• Agent visits different regions

• Avoiding the dithering effect of random walk

𝑓𝑡 𝑠 = 𝐷𝑡
2 𝑠, 𝑠′ 𝑠′∈𝕊 + 𝑐𝑜𝑛𝑠𝑡

*See ICML paper for the proof



Properties of the Score Function

Proposition 2
Relates 𝑓𝑡 𝑠 to 𝝅0, the stationary distribution of the graph

• PageRank algorithm [Page et al. ’99, Kleinberg ‘99]

Exploration benefits
• Diffusion options lead to states for which 𝝅0 𝑠 is small 

• Rarely visited by an uninformed random walk

𝑓𝑡 𝑠 = 𝒑𝑡
𝑠
− 𝝅0

2
𝑓𝑡 𝑠 ≤ 𝜔2

2𝑡 1
𝝅0 𝑠

− 1

*See ICML paper for the proof



Extensions and Scaling Up

• Extending diffusion options to stochastic domains
• Stochastic domains → can lead to asymmetric matrices 

• We use polar decomposition on the graph Laplacian [Mhaskar ‘18]

• Scaling up to large scale domains/function approximation case
• [Wu et al. ‘19], [Jinnai et al. ‘20]

• See ICML paper for further discussion and results



Summary

• We introduced theoretically motivated options

• Analysis based on concepts from manifold learning

• Diffusion options encourage exploration
• Lead to distant states in term of diffusion distance

• Compensate for low stationary distribution values

• Empirically demonstrated improved performance
• Both learning and exploration



Thank you
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