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Option Discovery

 We address the problem of option discovery

e Options (a.k.a. skills) are a predefined sequence of primitive actions
[Sutton et al. ‘99]

* Options were shown to improve both learning and exploration

* Setting
* Not associated with any specific task
* Acquired without receiving any reward
* Important and challenging problem in RL



Contribution

* A new approach to option discovery with theoretical foundation
* Based on manifold analysis

* The analysis includes novel results in manifold learning

* We propose an algorithm for option discovery
e Outperforms competing options



Graph Based Approach

* The finite domain is represented by a graph [Mahadevan ‘07]
* Nodes - the states (S is the set of states)
* Edges - according to the state’s connectivity

* The graph is a discrete representation of a manifold

State=Node

M — Adjacency matrix D — Degree matrix
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The Proposed Algorithm

1. Compute the random walk matrix W = %(I — MD™1)

2. Apply EVD to W and obtain its left and right eigenvectors {¢;}, {@i},
and its eigenvalues {w;}

To be motivated
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3. Construct |[f::S—> R, fi(s) = ”Zizz a)fqbi(S)qbiH later

4. Find the local maxima of f;(s), denoted as {Séi)} cS

5. For each local maximum, Séi), build an option leading to it

f+ allows the identification of goal states



Demonstrating the Score Function
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* 4Rooms [Sutton et al. ‘99]

* The local maxima of f;(s) are at states that are “far away” from all
other states
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Experimental Results - Learning
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Experimental Results - Exploration

* Exploration
 Median number of steps between every two states [Machado et al. ‘17]
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[Machado et al.’17] [Jinnai et al. ‘19]




Theoretical Analysis

* We use manifold learning results and concepts
e Diffusion distance [Coifman and Laffon ‘06]
* New concept — considering the entire spectrum [Cheng and Mishne ‘18]

* Comparison to existing work - eigenoptions [Machado et al. ‘17] and
cover options [Jinnai et al. ‘19]
* Use only the principal components instead of all/many

* Consider only one eigenvector at a time, instead of incorporating them
together



Diffusion Distance

e Consider Wt = (

Euclidean distance
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Properties of the Score Function

Proposition 1

The function f;:S — R can be expressed as

‘ f:(s) = (D (s,s"))ses + const

* (Df(s,s"))qes is the average diffusion distance between state s and all

other states

*See ICML paper for the proof



Properties of the Score Function

Proposition 1

The function f;:S — R can be expressed as

‘ f:(s) = (D (s,s"))ses + const

e Option discovery: max f;(s) = max{D?(s,s"))ses
Exploration benefits

* Agent visits different regions
* Avoiding the dithering effect of random walk

*See ICML paper for the proof



Properties of the Score Function

Proposition 2
Relates f;(s) to m,, the stationary distribution of the graph

ft(s) = HPES) - nOHZ fe(s) < w3 (no(s) 1)

* PageRank algorithm [Page et al. '99, Kleinberg ‘99]

Exploration benefits
« Diffusion options lead to states for which 1y (s) is small
e Rarely visited by an uninformed random walk

*See ICML paper for the proof



Extensions and Scaling Up

* Extending diffusion options to stochastic domains
 Stochastic domains = can lead to asymmetric matrices
* We use polar decomposition on the graph Laplacian [Mhaskar ‘18]

* Scaling up to large scale domains/function approximation case
e [Wu et al. ‘19], [Jinnai et al. 20]

* See ICML paper for further discussion and results



Summary

* We introduced theoretically motivated options
* Analysis based on concepts from manifold learning

* Diffusion options encourage exploration
* Lead to distant states in term of diffusion distance
 Compensate for low stationary distribution values

* Empirically demonstrated improved performance
* Both learning and exploration
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