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Overview

Purpose of this work

1. Define a Gaussian process (GP) [6] over sequences/time series

I To model of functions of sequences {Seq(Rd )→ R}
(fx)x∈Seq(Rd ) ∼ GP(m(·), k(·, ·))

I Find a suitable covariance kernel
k : Seq(Rd )× Seq(Rd )→ R

I Seq(Rd ) := {(xt1 , . . . , xtL ) | (ti , xti ) ∈ R+ × Rd , L ∈ N}
2. Develop an efficient inference framework

I Standard challenges: intractable posteriors, O(N3) scaling in
training data

I Additional challenge: potentially very high dimensional inputs
(long sequences)
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Overview

Suitable feature map? Signatures from stochastic analysis [2]!

Can be used to transform vector-kernels into sequence-kernels

I κ : Rd × Rd → R a kernel for vector-valued data
I [4] used signatures to define the kernel for x, y ∈ Seq(Rd )

k(x, y) =
M∑

m=0
σ2

m
∑

1≤i1<···<im≤Lx
1≤j1<···<jm≤Ly

c(i)c(j)
m∏

l=1
∆il ,jlκ(xil , yjl )

for some explicitly given constants c(i1, . . . , im), c(j1, . . . , jm)
∆i ,jκ(xi , yj) = κ(xi+1, yj+1)− κ(xi , yj+1)− κ(xi+1, yj) + κ(xi , yj)

I Strong theoretical properties!
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Overview

Our contributions

I Bringing GPs and signatures together (+analysis)

I Developing a tractable, efficient inference scheme

1. Sparse VI [3]: non-conjugacy, large N ∈ N
2. Inter-domain inducing points: long sequences (supx∈X Lx large)

I GPflow implementation, thorough experimental evaluation
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Signatures

What are signatures?

Signatures are defined on continuous time objects, paths

I Paths(Rd ) =
{

x ∈ C([0,T ],Rd ) | x0 = 0, ‖x‖bv < +∞
}

Φm(x) =
∫

0<t1<···<tm<T ẋt1 ⊗ · · · ⊗ ẋtmdt1 . . . dtm

Φm(x) ∈ (Rd )⊗m is what is known as a tensor of degree m ∈ N
Φ(x) = (Φm(x))m≥0 is an infinite collection of tensors with
increasing degrees
A generalization of polynomials for vector-valued data to paths
(and sequences!)
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0<t1<···<tm<T ẋt1 ⊗ · · · ⊗ ẋtmdt1 . . . dtm

Φm(x) ∈ (Rd )⊗m is what is known as a tensor of degree m ∈ N
Φ(x) = (Φm(x))m≥0 is an infinite collection of tensors with
increasing degrees

A generalization of polynomials for vector-valued data to paths
(and sequences!)

23/62



Signatures

What are signatures?

Signatures are defined on continuous time objects, paths

I Paths(Rd ) =
{

x ∈ C([0,T ],Rd ) | x0 = 0, ‖x‖bv < +∞
}

Φm(x) =
∫
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Signatures

Sequences as paths
x = (xt1 , . . . , xtL) ∈ Seq(Rd )

Define a mapping Seq(Rd )→ Paths(Rd )
Straightforward choice? Linear interpolation!

t 7→ (ti+1 − ti )−1(xti (ti+1 − t) + xti+1(t − ti ) for t ∈ [ti , ti+1)
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Figure: Linear interpolation of a sequence

25/62



Signatures

Sequences as paths
x = (xt1 , . . . , xtL) ∈ Seq(Rd )
Define a mapping Seq(Rd )→ Paths(Rd )

Straightforward choice? Linear interpolation!
t 7→ (ti+1 − ti )−1(xti (ti+1 − t) + xti+1(t − ti ) for t ∈ [ti , ti+1)

1 2 3 4 5 6 7 8 9 10
ti

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

x t
i

Sequence

1 2 3 4 5 6 7 8 9 10
ti

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

x t
i

Path

Figure: Linear interpolation of a sequence

26/62



Signatures

Sequences as paths
x = (xt1 , . . . , xtL) ∈ Seq(Rd )
Define a mapping Seq(Rd )→ Paths(Rd )
Straightforward choice? Linear interpolation!

t 7→ (ti+1 − ti )−1(xti (ti+1 − t) + xti+1(t − ti ) for t ∈ [ti , ti+1)

1 2 3 4 5 6 7 8 9 10
ti

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

x t
i

Sequence

1 2 3 4 5 6 7 8 9 10
ti

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

x t
i

Path

Figure: Linear interpolation of a sequence

27/62



Signatures

Sequences as paths
x = (xt1 , . . . , xtL) ∈ Seq(Rd )
Define a mapping Seq(Rd )→ Paths(Rd )
Straightforward choice? Linear interpolation!

t 7→ (ti+1 − ti )−1(xti (ti+1 − t) + xti+1(t − ti ) for t ∈ [ti , ti+1)

1 2 3 4 5 6 7 8 9 10
ti

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

x t
i

Sequence

1 2 3 4 5 6 7 8 9 10
ti

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

x t
i

Path

Figure: Linear interpolation of a sequence
28/62



Signatures

What makes the signature a good feature map

I continuous time treatment of sequences
I same feature space for sequences of different length
I universally approximates functions of sequences (paths)
I learn the extent of parametrization (in)variance
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Signatures

More on parametrization invariance

Paths can be broken down into two constituents:

I trajectory
I parametrization

Trajectory: an ordered collection of points the path crosses
Parametrization: the speed at which the trajectory is traversed
Parametrization invariance: only takes the trajectory into account,
but factors out the parametrization
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Signatures

Parametrization invariance: an illustration
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Signatures

What the signature can do for you

I Compare sequences of different length (same feature space)
I Approximate functions of sequences (universality)
I Learn functions of sequences that depend only on the

trajectory (parametrization invariance)
I Deal with irregularly sampled time series (parametrization

invariance)
I Deal with high-dimensional sequences (kernelization)
I +1: Learn degree of smoothness by choice of base kernel, e.g.

RBF, Matérn (kernelization)
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Signatures

Take away. signature features have many attractive properties for
modelling sequences, and they can be kernelized to define Gaussian
processes over sequences and paths
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Experiments

Compared GPs with signature covariances on 16 multivariate TSC
datasets against baselines:

I Recurrent deep kernels (LSTM, GRU) [1]
I Convolutional kernels [5]

GPs with signatures consistently performed well, while alternatives
did good on some datasets, but very poorly on others
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probabilities (NLPP) on 16 multivariate time series classification datasets

51/62



Experiments

Compared GPs with signature covariances on 16 multivariate TSC
datasets against baselines:
I Recurrent deep kernels (LSTM, GRU) [1]

I Convolutional kernels [5]

GPs with signatures consistently performed well, while alternatives
did good on some datasets, but very poorly on others

G
PS

ig
LS

TM

G
PS

ig
G

R
U

G
PS

ig

G
PL

ST
M

G
PG

R
U

G
PK

C
on

v1
D

0.0

0.2

0.4

0.6

0.8

M
is

cl
as

si
fic

at
io

n

G
PS

ig
LS

TM

G
PS

ig
G

R
U

G
PS

ig

G
PL

ST
M

G
PG

R
U

G
PK

C
on

v1
D

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
LP

P

Figure: Box-plots of misclassification errors and negative log-predictive
probabilities (NLPP) on 16 multivariate time series classification datasets
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Further reading

Signatures are an exciting new way of modelling sequential data

Feature extraction
I Rough paths, Signatures and the modelling of functions on streams,

arXiv:1405.4537, 2014.
I A Primer on the Signature Method in Machine Learning,

arXiv:1603.03788, 2016.
I A Generalised Signature Method for Time Series, arXiv:2006.00873, 2020.

Nonparametric methods
I Kernels for sequentially ordered data, Journal of Machine Learning

Research, 2019.
I Signature moments to characterize laws of stochastic processes,

arXiv:1810.10971, 2018.
I Persistence paths and signature features in topological data analysis,

arXiv:1806.00381, 2018.
I This work
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Further reading

Deep learning
I Sparse arrays of signatures for online character recognition,

arXiv:1308.0371, 2013.
I Learning stochastic differential equations using RNN with log signature

features, arXiv:1908.08286, 2019.
I Deep Signature Transforms, 33rd Conferenceon Neural Information

Processing Systems, NeurIPS, 2019.
I Seq2Tens: An Efficient Representation of Sequences by Low-Rank Tensor

Projections, arXiv:2006.07027, 2020.

... and many more!
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Thank you!
C. Toth, and H. Oberhauser,
"Bayesian Learning from Sequential Data using
Gaussian Processes with Signature Covariances"
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