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Motivation

• DNNs are vulnerable to both privacy 
attacks and adversarial examples

• Existing efforts only focus on either 
preserving DP or deriving certified 
robustness, but not both DP and 
robustness!
• private models are unshielded under 

adversarial examples

• robust models (adversarial training) 
do not offer privacy protections to 
the training data

• Bounding the robustness of a model 
(protects data privacy and is robust 
against adversarial examples) at scale is 
nontrivial
• adversarial examples introduces a 

previously unknown privacy risk

• unrevealed interplay (trade-off) among 
DP preservation, adversarial learning, 
and robustness bounds
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Goals

Methods Results

Deliverables

• Privacy-preserving (Laplace) noise is 
injected into inputs and hidden layers to 
achieve DP in learning private model 
parameters.

• The privacy noise 𝑝 is projected on the 
scale of the robustness noise 𝑟.

– a composition of certified robustness in both 
input and latent spaces

• Leverage the recipe of distributed 
adversarial training to develop a 
stochastic batch training

– disjoint and fixed batches are distributed to 
local DP trainers 

• Established a connection among DP 
preservation to protect the training data, 
adversarial learning, and certified robustness.

• Derived a sequential composition robustness 
in both input and latent spaces.

• Addressed the trade-off among model utility, 
privacy loss, and robustness.

• Rigorous experiments shown that our 
mechanism significantly enhances the 
robustness and scalability of DP DNNs.

• Algorithms and models: 
https://github.com/haiphanNJIT/StoBatch

• Develop a novel mechanism (StoBatch) to: 1) preserve DP of the training data, 2) be
provably and practically robust to adversarial examples, 3) retain high model utility, and 4)
be scalable.

https://github.com/haiphanNJIT/StoBatch


Differential Privacy

• Databases 𝐷 and 𝐷’ are neighbors if they are different in one 
individual’s contribution

• (𝜖, 𝛿)-Differential Privacy: for all 𝐷,𝐷’ neighbors, the distribution of 
A 𝐷 is (nearly) the same as the distribution of 𝐴 𝐷′ for all 𝐨:

privacy loss
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DP Mechanisms
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Robustness Condition [Lécuyer et al., 2019]
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where 𝑘 = 𝑦(𝑥), indicating that a small perturbation in 
the input does not change the predicted label 𝑦(𝑥).
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DP with Certified Robustness 
[Lécuyer et al., 2019]

• Image level: 𝑥 = 𝑥 + 𝑁 0, 𝜎#$
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Differential Privacy in Adversarial Learning [Overview]

•
• easier to train, small sensitivity bounds, and reusability
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DP Auto-Encoder
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• DP Adversarial Examples

• DP Objective function

Adversarial Learning with DP
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Algorithm
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• Project the privacy noise 𝑝 on the scale of the robustness noise 𝑟.

• What is the general robustness bound, given 𝜅 and 𝜑?

Composition of Certified Robustness
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Verified Inference

• StoBatch Robustness
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where 𝑘 = 𝑦(𝑥), indicating that a small perturbation in
the input does not change the predicted label 𝑦(𝑥).
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Stochastic Batch Mechanism

• Under the same DP protection.

• Training from multiple batches with
more adversarial examples, without
affecting the DP bound.

• The optimization of one batch does
not affect the DP protection at any
other batch and at the dataset level
𝐷, across 𝑇 training steps.
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Experimental Results

• Interplay among model utility, 
privacy loss, and robustness 
bounds
• privacy budget
• attack sizes
• scalability

• CNNs on MNIST, CIFAR-10
• ResNet-18 on Tiny ImageNet

• Baseline approaches
• PixelDP [Lecuyer et al., S&P’19]
• DPSGD   [Abadi et al., CCS’16]
• AdLM [Phan et al., ICDM’17]
• Secure-SGD [Phan et al., IJCAI’19] 

with AGM   [Balle et al., ICML’18]
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CIFAR-10
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• StoBatch
• 45.25 ± 1.6% 

(conventional) 
• 42.59 ± 1.58% 

(certified)
• SecureSGD

• 29.08 ± 11.95% 
(conventional)

• 19.58 ± 5.0% 
(certified)

• p < 2.75e-20
• 2-tail t-test
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• StoBatch
• 29.78 ± 4.8% 

(conventional)
• 28.31 ± 1.58% 

(certified)
• SecureSGD

• 8.99 ± 5.95% 
(conventional)

• 8.72 ± 5.5% 
(certified)

• p < 1.55e-42
• 2-tail t-test

Tiny ImageNet



Conclusion

• Established a connection among DP preservation to protect the 
training data, adversarial learning, and certified robustness.
• Derived a sequential composition robustness in both input and latent 

spaces.
• Addressed the trade-off among model utility, privacy loss, and 

robustness.
• Rigorous experiments shown that our mechanism significantly 

enhances the robustness and scalability of DP DNNs.
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Thank you! 

phan@njit.edu, we are hiring!
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