Scalable Differential Privacy with Certified Robustness in Adversarial Learning

NhatHai Phan¹, My T. Thai², Han Hu¹, Ruoming Jin³, Tong Sun⁴, and Dejing Dou⁵

Ying Wu College of Computing, New Jersey Institute of Technology
 Department of Computer & Information Sciences & Engineering, University of Florida
 Computer Science Department, Kent State University
 Adobe Research Lab
 Computer and Information Science Department, University of Oregon

Email: phan@njit.edu

Outline

- Motivation and Background
- Differential Privacy (DP) in Adversarial Learning
- Composition of Certified Robustness
- Stochastic Batch Training (StoBatch)
- Experimental Results and Conclusion

Motivation

- DNNs are vulnerable to both privacy attacks and adversarial examples
- Existing efforts only focus on either preserving DP or deriving certified robustness, but not both DP and robustness!
 - private models are unshielded under adversarial examples
 - robust models (adversarial training) do not offer privacy protections to the training data

- Bounding the robustness of a model (protects data privacy and is robust against adversarial examples) at scale is nontrivial
 - adversarial examples introduces a previously unknown privacy risk
 - unrevealed interplay (trade-off) among DP preservation, adversarial learning, and robustness bounds

Goals

• Develop a novel mechanism (StoBatch) to: 1) preserve DP of the training data, 2) be provably and practically robust to adversarial examples, 3) retain high model utility, and 4) be scalable.

Methods

- Privacy-preserving (Laplace) noise is injected into inputs and hidden layers to achieve DP in learning private model parameters.
- The privacy noise p is projected on the scale of the robustness noise r.
- a composition of certified robustness in both input and latent spaces
- Leverage the recipe of distributed adversarial training to develop a stochastic batch training
- disjoint and fixed batches are distributed to local DP trainers

Results

- Established a connection among DP preservation to protect the training data, adversarial learning, and certified robustness.
- Derived a sequential composition robustness in both input and latent spaces.
- Addressed the trade-off among model utility, privacy loss, and robustness.
- Rigorous experiments shown that our mechanism significantly enhances the robustness and scalability of DP DNNs.

Deliverables

 Algorithms and models: https://github.com/haiphanNJIT/StoBatch

Differential Privacy

 Databases D and D' are neighbors if they are different in one individual's contribution

• (ϵ, δ) -Differential Privacy: for all D, D' neighbors, the distribution of A(D) is (nearly) the same as the distribution of A(D') for all \mathbf{o} :

$$Pr[A(D) = \mathbf{o}] \leq e \Pr[A(D') = \mathbf{o}] + \delta$$
 privacy loss

DP Mechanisms

[Chaudhuri & Sarwate]

Robustness Condition [Lécuyer et al., 2019]

$$\forall \alpha \in l_p(\mu): f_k(x + \alpha) > \max_{i:i \neq k} f_i(x + \alpha)$$

where k = y(x), indicating that a small perturbation in the input does not change the predicted label y(x).

DP with Certified Robustness

[Lécuyer et al., 2019]

• Image level: $x = x + N(0, \sigma_r^2)$

•
$$\sigma_r \ge \sqrt{2 \ln \left(\frac{1.25}{\delta_r}\right)} \Delta_r / \epsilon_r$$

$$\forall \alpha \in l_p(\mu = 1) : \hat{\mathbb{E}}_{lb} f_k(x) > e^{2\epsilon_r} \max_{i:i \neq k} \hat{\mathbb{E}}_{ub} f_i(x) + (1 + e^{\epsilon_r}) \delta_r$$

where $\hat{\mathbb{E}}_{lb}$ and $\hat{\mathbb{E}}_{ub}$ are the lower bound and upper bound of the expected value $\hat{\mathbb{E}}f(x) = \frac{1}{N} \sum_{N} f(x)_{N}$, derived from the Monte Carlo estimation with an η -confidence, given N is the number of invocations of f(x) with independent draws in the noise σ_r .

Robustness Test Example

Outline

- Motivation and Background
- Differential Privacy in Adversarial Learning
- Composition of Certified Robustness
- Stochastic Batch Training (StoBatch)
- Experimental Results and Conclusion

Differential Privacy in Adversarial Learning [Overview]

- $f(x) = g(a(x, \theta_1), \theta_2)$
 - easier to train, small sensitivity bounds, and reusability

DP Auto-Encoder

$$\bar{\mathcal{R}}_{\bar{B}_t}(\theta_1) = \sum_{x_i \in \bar{B}_t} \left[\sum_{j=1}^d \left(\frac{1}{2} \theta_{1j} \bar{h}_i \right) - \bar{x}_i \tilde{x}_i \right]$$

$$\bar{x}_i = x_i + \frac{1}{m} Lap\left(\frac{\Delta_{\mathcal{R}}}{\varepsilon_1}\right)$$
, and $\bar{h}_i = \theta_1^T \bar{x}_i + \frac{2}{m} Lap\left(\frac{\Delta_{\mathcal{R}}}{\varepsilon_1}\right)$

Theorem 1 The gradient descent-based optimization of $\overline{\mathcal{R}}_{\overline{B}_t}(\theta_1)$ preserves $(\epsilon_1/\gamma_{\mathbf{x}} + \epsilon_1)$ -DP in learning θ_1 .

Lemma 2 The global sensitivity of $\widetilde{\mathcal{R}}$ over any two neighboring batches, B_t and B'_t , is: $\Delta_{\mathcal{R}} \leq d(\beta + 2)$.

Adversarial Learning with DP

Lemma 3 The computation of the batch B_t as the input layer is $(\epsilon_1/\gamma_{\mathbf{x}})$ -DP, and the computation of the affine transformation $\overline{\mathbf{h}}_{1\overline{B}_t}$ is (ϵ_1/γ) -DP.

DP Adversarial Examples

$$\overline{x}_{j}^{\text{adv}} = \overline{x}_{j} + \mu \cdot \text{sign}\Big(\nabla_{\overline{x}_{j}} \mathcal{L}\big(f(\overline{x}_{j}, \theta), y(\overline{x}_{j})\big)\Big)$$

DP Objective function

as:
$$\mathcal{L}_{\overline{B}_t}(\theta_2) \cong \sum_{k=1}^K \sum_{\overline{x}_i} \left[\mathbf{h}_{\pi i} W_{\pi k} - (\mathbf{h}_{\pi i} W_{\pi k}) y_{ik} - \frac{1}{2} |\mathbf{h}_{\pi i} W_{\pi k}| + \frac{1}{8} (\mathbf{h}_{\pi i} W_{\pi k})^2 \right] \cong \mathcal{L}_{1\overline{B}_t}(\theta_2) - \mathcal{L}_{2\overline{B}_t}(\theta_2),$$
 where $\mathcal{L}_{1\overline{B}_t}(\theta_2) = \sum_{k=1}^K \sum_{\overline{x}_i} \left[\mathbf{h}_{\pi i} W_{\pi k} - \frac{1}{2} |\mathbf{h}_{\pi i} W_{\pi k}| + \frac{1}{8} (\mathbf{h}_{\pi i} W_{\pi k})^2 \right],$ and $\mathcal{L}_{2\overline{B}_t}(\theta_2) = \sum_{k=1}^K \sum_{\overline{x}_i} (\mathbf{h}_{\pi i} y_{ik}) W_{\pi k}.$

Algorithm 1 Adversarial Learning with DP

Input: Database D, loss function L, parameters θ , batch size m, learning rate ϱ_t , privacy budgets: ϵ_1 and ϵ_2 , robustness parameters: ϵ_r , Δ_r^x , and Δ_r^h , adversarial attack size μ_a , the number of invocations n, ensemble attacks A, parameters ψ and ξ , and the size $|\mathbf{h}_{\pi}|$ of \mathbf{h}_{π}

- 1: **<u>Draw Noise</u>** $\chi_1 \leftarrow [Lap(\frac{\Delta_{\mathcal{R}}}{\epsilon_1})]^d, \chi_2 \leftarrow [Lap(\frac{\Delta_{\mathcal{R}}}{\epsilon_1})]^{\beta}, \chi_3 \leftarrow [Lap(\frac{\Delta_{\mathcal{L}2}}{\epsilon_2})]^{|\mathbf{h}_{\pi}|}$
- 2: **Randomly Initialize** $\theta = \{\theta_1, \theta_2\}$, $\mathbf{B} = \{B_1, \dots, B_{N/m}\}$ s.t. $\forall B \in \mathbf{B} : B$ is a batch with the size $m, B_1 \cap \dots \cap B_{N/m} = \emptyset$, and $B_1 \cup \dots \cup B_{N/m} = D$, $\overline{\mathbf{B}} = \{\overline{B}_1, \dots, \overline{B}_{N/m}\}$ where $\forall i \in [1, N/m] : \overline{B}_i = \{\overline{x} \leftarrow x + \frac{\chi_1}{m}\}_{x \in B_i}$
- 3: Construct a deep network f with hidden layers $\{\mathbf{h}_1 + \frac{2\chi_2}{m}, \dots, \mathbf{h}_{\pi}\}$, where \mathbf{h}_{π} is the last hidden layer
- 4: for $t \in [T]$ do
- 5: **Take** a batch $\overline{B}_i \in \overline{\mathbf{B}}$ where $i = t\%(N/m), \overline{B}_t \leftarrow \overline{B}_i$
- 6: Ensemble DP Adversarial Examples:
- 7: **Draw Random Perturbation Value** $\mu_t \in (0, 1]$
- 8: **Take** a batch $\overline{B}_{i+1} \in \overline{\mathbf{B}}$, **Assign** $\overline{B}_t^{\mathrm{adv}} \leftarrow \emptyset$
- 9: **for** $l \in A$ **do**
- 10: **Take** the next batch $\overline{B}_a \subset \overline{B}_{i+1}$ with the size m/|A|
- 11: $\forall \overline{x}_j \in \overline{B}_a$: **Craft** $\overline{x}_j^{\text{adv}}$ by using attack algorithm A[l] with $l_{\infty}(\mu_t)$, $\overline{B}_t^{\text{adv}} \leftarrow \overline{B}_t^{\text{adv}} \cup \overline{x}_j^{\text{adv}}$
- 12: **<u>Descent:</u>** $\theta_1 \leftarrow \theta_1 \varrho_t \nabla_{\theta_1} \overline{\mathcal{R}}_{\overline{B}_t \cup \overline{B}_t^{\text{adv}}}(\theta_1); \ \theta_2 \leftarrow \theta_2 \varrho_t \nabla_{\theta_2} \overline{L}_{\overline{B}_t \cup \overline{B}_t^{\text{adv}}}(\theta_2) \text{ with the noise } \frac{\chi_3}{m}$

Output: $\epsilon = (\epsilon_1 + \epsilon_1/\gamma_{\mathbf{x}} + \epsilon_1/\gamma + \epsilon_2)$ -DP parameters $\theta = \{\theta_1, \theta_2\}$, robust model with an ϵ_r budget

Algorithm

$$L_{\overline{B}_t \cup \overline{B}_t^{\text{adv}}}(\theta_2) = \frac{1}{m(1+\xi)} \left(\sum_{\overline{x}_i \in \overline{B}_t} \mathcal{L}(f(\overline{x}_i, \theta_2), y_i) \right) + \xi \sum_{\overline{x}_j^{\text{adv}} \in \overline{B}_t^{\text{adv}}} \Upsilon(f(\overline{x}_j^{\text{adv}}, \theta_2), y_j) \right)$$

Theorem 4 Algorithm 1 achieves $(\epsilon_1 + \epsilon_1/\gamma_{\mathbf{x}} + \epsilon_1/\gamma + \epsilon_2)$ -DP parameters $\overline{\theta} = {\overline{\theta}_1, \overline{\theta}_2}$ on the private training data D across T gradient descent-based training steps.

Outline

- Motivation and Background
- Differential Privacy in Adversarial Learning
- Composition of Certified Robustness
- Stochastic Batch Training (StoBatch)
- Experimental Results and Conclusion

Composition of Certified Robustness

• Project the privacy noise p on the scale of the robustness noise r.

$$\kappa = \frac{\Delta_{\mathcal{R}}}{m\varepsilon_{1}} / \frac{\Delta_{r}^{x}}{\varepsilon_{r}}, \qquad \bar{x}_{i} = x_{i} + Lap\left(\frac{\kappa \Delta_{r}^{x}}{\varepsilon_{r}}\right)$$

$$\varphi = \frac{\Delta_{\mathcal{R}}}{m\varepsilon_{1}} / \frac{\Delta_{r}^{h}}{\varepsilon_{r}}, \qquad \bar{h}_{i} = h_{i} + Lap\left(\frac{\varphi \Delta_{r}^{h}}{\varepsilon_{r}}\right)$$

• What is the general robustness bound, given κ and φ ?

$$f(\mathcal{M}_1, \dots, \mathcal{M}_S | x) : \mathbb{R}^d \to \prod_{s \in [1, S]} f^s(x) \in \mathbb{R}^K$$

Sequential Composition of Certified Robustness: Lemma 5, Theorem 5

$$\forall \alpha \in l_p(\kappa + \varphi) : \hat{\mathbb{E}} f_k(x + \alpha) > \max_{i:i \neq k} \hat{\mathbb{E}} f_i(x + \alpha)$$

Verified Inference

StoBatch Robustness

$$(\kappa + \varphi)_{max} = \max_{\epsilon_r} \frac{\Delta_{\mathcal{R}} \epsilon_r}{m \epsilon_1} (\frac{1}{\Delta_r^x} + \frac{2}{\Delta_r^h}) \text{ s.t.}$$

$$\hat{\mathbb{E}}_{lb} f_k(x) > e^{2\epsilon_r} \max_{i:i \neq k} \hat{\mathbb{E}}_{ub} f_i(x) \text{ and}$$

$$\overline{x} = x + Lap(\frac{\kappa \Delta_r^x}{\epsilon_r}), \quad \overline{h} = h + Lap(\frac{\varphi \Delta_r^h}{\epsilon_r})$$

$$\forall \alpha \in l_p(\kappa + \varphi)_{max}: f_k(x + \alpha) > \max_{i:i \neq k} f_i(x + \alpha)$$

where k = y(x), indicating that a small perturbation in the input does not change the predicted label y(x).

Stochastic Batch Mechanism

Under the same DP protection.

- Training from multiple batches with more adversarial examples, without affecting the DP bound.
- The optimization of one batch does not affect the DP protection at any other batch and at the dataset level D, across T training steps.

Outline

- Motivation and Background
- Differential Privacy in Adversarial Learning
- Composition of Certified Robustness
- Stochastic Batch Training (StoBatch)
- Experimental Results and Conclusion

Experimental Results

- Interplay among model utility, privacy loss, and robustness bounds
 - privacy budget
 - attack sizes
 - scalability

- CNNs on MNIST, CIFAR-10
- ResNet-18 on Tiny ImageNet

- Baseline approaches
 - PixeIDP [Lecuyer et al., S&P'19]
 - DPSGD [Abadi et al., CCS'16]
 - AdLM [Phan et al., ICDM'17]
 - Secure-SGD [Phan et al., IJCAI'19]
 with AGM [Balle et al., ICML'18]

$$conventional\ acc = \sum_{i=1}^{|test|} \frac{isCorrect(x_i)}{|test|}$$

$$\textit{certified acc} = \sum_{i=1}^{|test|} \frac{isCorrect(x_i) \& isRobust(x_i)}{|test|}$$

[Lécuyer et al., 2019]

CIFAR-10

- StoBatch
 - $45.25 \pm 1.6\%$ (conventional)
 - 42.59 ± 1.58% (certified)
- SecureSGD
 - 29.08 \pm 11.95% (conventional)
 - 19.58 ± 5.0% (certified)
- p < 2.75e-20
 - 2-tail t-test

- (c) Conventional Accuracy $(T_a = 2,000)$
- (d) Certified Accuracy $(T_a = 2,000)$

Tiny ImageNet

- StoBatch
 - 29.78 \pm 4.8% (conventional)
 - 28.31 ± 1.58% (certified)
- SecureSGD
 - 8.99 ± 5.95% (conventional)
 - 8.72 ± 5.5% (certified)
- p < 1.55e-42
 - 2-tail t-test

(c) Conventional Accuracy ($T_a = 2,000$)

(d) Certified Accuracy ($T_a = 2,000$)

Accuracy on the Tiny ImageNet dataset, under Strong Iterative Attacks ($T_a = 1,000; 2,000$). ϵ is set to 5.

Conclusion

- Established a connection among DP preservation to protect the training data, adversarial learning, and certified robustness.
- Derived a sequential composition robustness in both input and latent spaces.
- Addressed the trade-off among model utility, privacy loss, and robustness.
- Rigorous experiments shown that our mechanism significantly enhances the robustness and scalability of DP DNNs.

Thank you!

phan@njit.edu, we are hiring!

