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Motivation

* DNNs are vulnerable to both privacy * Bounding the robustness of a model
attacks and adversarial examples (protects data privacy and is robust
against adversarial examples) at scale is
e Existing efforts only focus on either nontrivial
preserving DP or deriving certified * adversarial examples introduces a
robustness, but not both DP and previously unknown privacy risk
robustness!
* private models are unshielded under * unrevealed interplay (trade-off) among
adversarial examples DP preservation, adversarial learning,

and robustness bounds

* robust models (adversarial training)
do not offer privacy protections to
the training data




« Develop a novel mechanism (StoBatch) to: 1) preserve DP of the training data, 2) be
provably and practically robust to adversarial examples, 3) retain high model utility, and 4)
be scalable.

* Privacy-preserving (Laplace) noise is « Established a connection among DP
injected into inputs and hidden layers to preservation to protect the training data,
achieve DP in learning private model adversarial learning, and certified robustness.
parameters. «  Derived a sequential composition robustness

in both input and latent spaces.

« Addressed the trade-off among model utility,
privacy loss, and robustness.

* Rigorous experiments shown that our
mechanism significantly enhances the
robustness and scalability of DP DNNSs.

« The privacy noise p is projected on the
scale of the robustness noise .

— a composition of certified robustness in both
input and latent spaces

« Leverage the recipe of distributed
adversarial training to develop a

stochastic batch training

— disjoint andlfixed batches are distributed to «  Algorithms and models:
local DP trainers https://github.com/haiphanNJIT/StoBatch



https://github.com/haiphanNJIT/StoBatch

Differential Privacy

e Databases D and D’ are neighbors if they are different in one
individual’s contribution

* (¢, 0)-Differential Privacy: for all D, D’ neighbors, the distribution of
A(D) is (nearly) the same as the distribution of A(D") for all o:

PrlA(D) = o] < GTPT[A(D’) =0|+ 9

privacy loss




DP Mechanisms
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Robusthess Condition [Lécuyer et al., 2019]

Va € L,(u): fr(x + a) > mgﬁfl (x + a)

where k = y(x), indicating that a small perturbation in
the input does not change the predicted label y(x).




DP with Certified Robustness

[Lécuyer et al., 2019]

* Image level: x = x + N(0,52)

. g, > \/z In (1515) A, /e,

Vo € lp(,u = 1) : Elbfk(;l;) > 6267"

max Eup fi (2)+(14€)8,

NE=

where I@lb and Eub are the lower bound and upper bound of

the expected value 1D f(x =~ Z NS )N, derived from the
Monte Carlo estimation W1th an 7)- conﬁdence given N 1s the
number of invocations of f(x) with independent draws in the

noise o,.
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* Differential Privacy in Adversarial Learning




Differential Privacy in Adversarial Learning [Overview]

- f(z) = g(a(x,61),02)

 easier to train, small sensitivity bounds, and reusability
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DP Auto-Encoder

ﬁét(91)= Z Zd‘( 01] ) XiXi

xl'EBt _]:1
_ 1 Ap 2 Ap
X; = X; +mLap (—1) and h; = 61 x; +mLap(€1)

Theorem 1 The gradient descent-based optimization of
Rz, (01) preserves (€1 /vx + €1)-DP in learning 6.

Lemma 2 The global sensitivity of R over any two neigh-
boring batches, B, and Bj, is: Ar < d(B + 2).
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Adversarial Learning with DP

Lemma 3 The computation of the batch B, as the input
layer is (€1/7x)-DP, and the computation of the affine trans- Vi Y
formation h, g is (€1/7)-DP

* DP Adversarial Examples
T =7, + p-sign(Va, L(£(T5,0),y(T)) )

* DP Objective function

privacy leakage - - -
as: [CE (HQ)J ~ Y >z i Why, — [(hmwwk)yz’kJ —
%‘hwika‘ + %(hmwwk)ﬂ - £1§t (92) - £2§t (92)’
where £,5 (62) = Sr_ 1 S [heiWap — e Wik | +
§ (B W], and[Ly, (62) = 3551 S, (hrayin) W -
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Algorithm 1 Adversarial Learning with DP

Input: Database D, loss function L, parameters 6, batch
size m, learning rate o;, privacy budgets: €; and €5, robust-
ness parameters: €,., A, and Af} adversarial attack size 1,
the number of invocations n, ensemble attacks A, parame-

ters ¢ and &, and the size
l:

—

1

AN

e Y e o

2:

Draw Noise y; < [Lap(

2217, X2 = [Lap(S2)]7,
X3 = [Lap(£2)] 10!
Randomly Initialize § = {61,602}, B =

{B1.....Bn/m} st. VB € B : B is a batch with the

sizem, BiN...N By, =0,and BiU...UBy/,, =

D B = {Bl,....BN/m} where Vi € [1, N/m] :
- {:13 —a+ m }IGB

: Construct a deep network f with hidden layers {h; +

%, ..., h;}, where h; is the last hidden layer
fort € [T do
Take a batch B; € B where i = t%(N/m), B; <
B;
Ensemble DP Adversarial Examples:
Draw Random Perturbation Value ; € (0, 1]
Take a batch B, ; € B, Assign F:dv — 0
for [ € Ado
Take the next batch B, C B, with the size m /|A4|
VZ; € B,: Craft fadv by using attack algorithm

adv

A[l) with Lo (), By By Uz
Descent: 0 «+ 0, — QtVQIRB Upadv(el) Oy
0y — 0:Vy, L~ B.UB" (A2) with the noise 2

Output: € = (e, + el/fyx + €1 /7 + €2)-DP parameters
6 = {6,605}, robust model with an €, budget

Algorithm

L, o (02) = (1+§ ( % L(f(Ti,02), 1)

+ ¢ Z Y (f(TAY,65), yj))

—adv c Badv

Theorem 4 Algorithm I achieves (€1+€1/vx+€1/7+¢€2)-
DP parameters 0 = {601, 05} on the private training data D
across 1" gradient descent-based training steps.
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 Composition of Certified Robustness




Composition of Certified Robustness

* Project the privacy noise p on the scale of the robustness noise 7.

Ar A} QAT
= ) h; =h + L

* What is the general robustness bound, given k and ¢?

fMa, ... . Mglz) :R* = [ f°(x) eR¥
s€[l,S]

Sequential Composition of Certified Robustness: Lemma 5, Theorem 5

Vo€ Ly(k + @) : Efp(x + o) > mi’éEf@(x + )




Verified Inference

e StoBatch Robustness

Are. , 1 2

(K + ©)maz = max e (A§€ + Af}) s.t.

A

Eip fr(z) > € mgﬁg]@ubfz‘(m) and
AZ _ AP
"2ry B = h4 Lap(£2L)

€Er €r

Va € L,(k + @) max: fr(x + a) > P}i‘ﬁfl (x+ a)

where k = y(x), indicating that a small perturbation in
the input does not change the predicted label y(x).

16




Stochastic Batch Mechanism

* Under the same DP protection.

Parameter Server: * Training from multiple batches with
0 =0 —0;"/n2iepin Vi0

more adversarial examples, without
9 /ve /) / \ . ’
- - \‘DP affecting the DP bound.
DNN DNN DNN

Partitioned Datasets |7 T T 1

Local Trainers

(Fixed & Disjoint Batches)

g 7 * The optimization of one batch does
G T not affect the DP protection at any
other batch and at the dataset level
D, across T training steps.
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* Experimental Results and Conclusion




Experimental Results

* Interplay among model utility,
privacy loss, and robustness
bounds

* privacy budget
e attack sizes
* scalability

* CNNs on MNIST, CIFAR-10
* ResNet-18 on Tiny ImageNet

* Baseline approaches
* PixelDP [Lecuyer et al., S&P’19]
e DPSGD [Abadi et al., CCS’16]
e AdLM [Phan etal., ICDM’17]

e Secure-SGD [Phan et al., IJCAI'19]
with AGM [Balle et al., ICML 18]

et isCorrect(x;)

test]|

conventional acc = E
i=1
|test]|

certified acc = Z

=1

isCorrect(x;) & isRobust(x;)
|test]

[Lécuyer et al.
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CIFAR-10

e StoBatch

* 45.25 1+ 1.6%
(conventional)

e 42.59 4+ 1.58%
(certified)
* SecureSGD

e 29.08 + 11.95%
(conventional)

e 19.58 + 5.0%
(certified)
* p<2.75e-20
e 2-tail t-test
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Tiny ImageNet

e StoBatch

* 29.78 + 4.8%
(conventional)

e 28.31 + 1.58%
(certified)
* SecureSGD

* 8.99 + 5.95%
(conventional)

e 8.72 +55%
(certified)
* p<1.55e-42
e 2-tail t-test
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Conclusion

* Established a connection among DP preservation to protect the
training data, adversarial learning, and certified robustness.

* Derived a sequential composition robustness in both input and latent
spaces.

* Addressed the trade-off among model utility, privacy loss, and
robustness.

* Rigorous experiments shown that our mechanism significantly
enhances the robustness and scalability of DP DNNs.
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