
Sub-Goal Trees – a Framework for
Goal-Based Reinforcement Learning
Tom Jurgenson, Or Avner, Edward Groshev, Aviv Tamar

Motivation: multi-goal reinforcement learning

• Multi-goal task: agent needs to reach different goals

Goal 1 !

Goal 2 !

• Multi-goal task: agent needs to reach different goals

• Frequently encountered in robotics / game-playing etc. :

• Motion planning

• Skill learning

Motivation: multi-goal reinforcement learning

Goal 1 !

Goal 2 !

Motivation: single —> multi goal-RL

RL is single-goal (cost function)

Goal

s

State=s

Motivation: single —> multi goal-RL

RL is single-goal (cost function)

Goal

s

State=s

How to extend to multiple goals?

Motivation: single —> multi goal-RL

RL is single-goal (cost function)

So far: UVFA[1], HER[2], many others

• Add goal ! state observation

• Train using standard RL

[2] Andrychowicz et al. Hindsight Experience Replay, 2017
[1] Schaul et al, Universal Value Function Approximators, 2015

Goal 1

s

State=
(s, g)

Goal 2

g

Motivation: single —> multi goal-RL

RL is single-goal (cost function)

So far: UVFA[1], HER[2], many others

• Add goal ! state observation

• Train using standard RL

[2] Andrychowicz et al. Hindsight Experience Replay, 2017
[1] Schaul et al, Universal Value Function Approximators, 2015

Goal 1

s

State=
(s, g)

Goal 2

g

“Bellman RL”

Motivation: single —> multi goal-RL

RL is single-goal (cost function)

So far: UVFA[1], HER[2], many others

• Add goal ! state observation

• Train using standard RL

[2] Andrychowicz et al. Hindsight Experience Replay, 2017
[1] Schaul et al, Universal Value Function Approximators, 2015

Goal 1

s

State=
(s, g)

Goal 2

g

“Bellman RL”Is that optimal?

Intuition: utilizing problem structure?

Consider: All-Pairs-Shortest-Path (APSP) problem

• Bellman RL approach = Bellman-Ford on all starts

Intuition: utilizing problem structure?

Consider: All-Pairs-Shortest-Path (APSP) problem

• Bellman RL approach = Bellman-Ford on all starts → O (|V |4)

Intuition: utilizing problem structure?

Consider: All-Pairs-Shortest-Path (APSP) problem

• Bellman RL approach = Bellman-Ford on all starts

• Floyd-Warshal is faster!

→ O (|V |4)
→ O (|V |3)

Intuition: utilizing problem structure?

Consider: All-Pairs-Shortest-Path (APSP) problem

• Bellman RL approach = Bellman-Ford on all starts

• Floyd-Warshal is faster!

→ O (|V |4)
→ O (|V |3)

Structure to the
problem we can

exploit!

Our approach: Sub-goal Tree (SGT)
New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

Our approach: Sub-goal Tree (SGT)
New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

s0, g s0

g?
“Bellman” RL:
What is the next min cost state?

Our approach: Sub-goal Tree (SGT)

s0

g

?
s1

s1

s0, g

“Bellman” RL:
What is the next min cost state?

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

Our approach: Sub-goal Tree (SGT)

s0

g
?

s2

s1, g
s0, g

s1
s2

“Bellman” RL:
What is the next min cost state?

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

Our approach: Sub-goal Tree (SGT)

s0

g

s1
s2

s7

s2, g
s1, g

s0, g s7

“Bellman” RL:
What is the next min cost state?

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

Our approach: Sub-goal Tree (SGT)

s0

g

?

“SGT” RL:
What is the middle min cost state?

(middle state = subgoal)

s0, g

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

Our approach: Sub-goal Tree (SGT)

s0

g

s4
?

“SGT” RL:
What is the middle min cost state?

(middle state = subgoal)

?
s4

s0, g

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

Our approach: Sub-goal Tree (SGT)

s0

g
?

“SGT” RL:
What is the middle min cost state?

(middle state = subgoal)

?

?

?

s0, s4

s0, g

s4, g

s6s2

s4

s2 s6

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

Our approach: Sub-goal Tree (SGT)

s0

g
“SGT” RL:

What is the middle min cost state?

(middle state = subgoal)

s4

s2 s6

s1
s3

s5

s7

s0, s2

s0, s4

s2, s4 s4, s6

s4, g

s6, g

s0, g

s1 s3 s5 s7

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

Our approach: Sub-goal Tree (SGT)

“Bellman” RL:
What is the next min cost state?

“SGT” RL:
What is the middle min cost state?

(middle state = subgoal) s0, s2

s0, s4

s2, s4 s4, s6

s4, g

s6, g

s0, g

s1 s3 s5 s7

s7

s2, g
s1, g

s0, g

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

Sub-goal Trees - What’s next?

1. DP principle for APSP RL
2. SGT is provably more efficient

3. New RL algorithms based on SGT

1. Value based - Fitted SGT-DP

2. High dim. Problems with SGT-PG

Background: Bellman’s Equation
Bellman’s principle of optimality

• Value function

𝑉 ∗
𝑡 (𝑠) = min

𝜋
𝔼𝜋(

𝑇

∑
𝑡′ =𝑡

𝑐(𝑠𝑡′) 𝑠𝑡 = 𝑠)

Bellman’s principle of optimality

• Value function

• Bellman’s equation

𝑉 ∗
𝑡 (𝑠) = min

𝑎 {𝑐(𝑠) + 𝔼(𝑉 ∗
𝑡+1(𝑠′) 𝑠, 𝑎)}

Immediate
cost

Proceed
optimally

𝑉 ∗
𝑡 (𝑠) = min

𝜋
𝔼𝜋(

𝑇

∑
𝑡′ =𝑡

𝑐(𝑠𝑡′) 𝑠𝑡 = 𝑠)

Background: Bellman’s Equation

Bellman’s principle of optimality

• Value function

• Bellman’s equation

𝑉 ∗
𝑡 (𝑠) = min

𝑎 {𝑐(𝑠) + 𝔼(𝑉 ∗
𝑡+1(𝑠′) 𝑠, 𝑎)}

Immediate
cost

Proceed
optimally

𝑉 ∗
𝑡 (𝑠) = min

𝜋
𝔼𝜋(

𝑇

∑
𝑡′ =𝑡

𝑐(𝑠𝑡′) 𝑠𝑡 = 𝑠)

Start

Goal

Background: Bellman’s Equation

Bellman’s principle of optimality

• Value function

• Bellman’s equation

𝑉 ∗
𝑡 (𝑠) = min

𝑎 {𝑐(𝑠) + 𝔼(𝑉 ∗
𝑡+1(𝑠′) 𝑠, 𝑎)}

Immediate
cost

Proceed
optimally

𝑉 ∗
𝑡 (𝑠) = min

𝜋
𝔼𝜋(

𝑇

∑
𝑡′ =𝑡

𝑐(𝑠𝑡′) 𝑠𝑡 = 𝑠)
Start

Goal

Bellman RL:

Decompose by next state

In SGT RL:

Decompose by subgoal

Background: Bellman’s Equation

All-pairs shortest-path (APSP)
• Directed, weighted graph

• Describes a deterministic MDP

• nodes, weights

•

𝑁 𝑐(𝑠, 𝑠’) ≥ 0
𝑐(𝑠, 𝑠) = 0 𝑠

𝑠’𝑐(𝑠, 𝑠’)

All-pairs shortest-path (APSP)
• Directed, weighted graph

• Describes a deterministic MDP

• nodes, weights

•

• Unconnected edge ! infinite weight

𝑁 𝑐(𝑠, 𝑠’) ≥ 0
𝑐(𝑠, 𝑠) = 0 𝑠

𝑠’𝑐(𝑠, 𝑠’)

𝑐(𝑠, 𝑠’) = ∞

All-pairs shortest-path (APSP)
• Directed, weighted graph

• Describes a deterministic MDP

• nodes, weights

•

• Unconnected edge ! infinite weight

• Objec&ve:

𝑁 𝑐(𝑠, 𝑠’) ≥ 0
𝑐(𝑠, 𝑠) = 0

For any :𝑠, 𝑔

𝑠

𝑠’𝑐(𝑠, 𝑠’)

𝑐(𝑠, 𝑠’) = ∞

Sub-Goal Tree Dynamic Programming
• length of shortest path in steps or less

• Obeys dynamic programming equations:

𝑉𝑘(𝑠, 𝑠′): 𝑠 → 𝑠′ 2𝑘

𝑉𝑘(𝑠, 𝑠) = 0 ∀𝑠
𝑉𝑘(𝑠, 𝑠′) = min

𝑠𝑚
{𝑉𝑘−1(𝑠, 𝑠𝑚) + 𝑉𝑘−1(𝑠𝑚, 𝑠′)} ∀𝑠, 𝑠′ :𝑠 ≠ 𝑠′

𝑉0(𝑠, 𝑠′) = 𝑐(𝑠, 𝑠′) ∀𝑠, 𝑠′

Sub-Goal Tree Dynamic Programming
• length of shortest path in steps or less

• Obeys dynamic programming equations:

𝑉𝑘(𝑠, 𝑠′): 𝑠 → 𝑠′ 2𝑘

𝑉𝑘(𝑠, 𝑠) = 0 ∀𝑠
𝑉𝑘(𝑠, 𝑠′) = min

𝑠𝑚
{𝑉𝑘−1(𝑠, 𝑠𝑚) + 𝑉𝑘−1(𝑠𝑚, 𝑠′)} ∀𝑠, 𝑠′ :𝑠 ≠ 𝑠′

𝑉0(𝑠, 𝑠′) = 𝑐(𝑠, 𝑠′) ∀𝑠, 𝑠′

s
s′

sm

Sub-Goal Tree Dynamic Programming
• length of shortest path in steps or less

• Obeys dynamic programming equations:

𝑉𝑘(𝑠, 𝑠′): 𝑠 → 𝑠′ 2𝑘

𝑉𝑘(𝑠, 𝑠) = 0 ∀𝑠
𝑉𝑘(𝑠, 𝑠′) = min

𝑠𝑚
{𝑉𝑘−1(𝑠, 𝑠𝑚) + 𝑉𝑘−1(𝑠𝑚, 𝑠′)} ∀𝑠, 𝑠′ :𝑠 ≠ 𝑠′

𝑉0(𝑠, 𝑠′) = 𝑐(𝑠, 𝑠′) ∀𝑠, 𝑠′

Sub-Goal Tree Dynamic Programming
• length of shortest path in steps or less

• Obeys dynamic programming equations:

𝑉𝑘(𝑠, 𝑠′): 𝑠 → 𝑠′ 2𝑘

𝑉𝑘(𝑠, 𝑠) = 0 ∀𝑠
𝑉𝑘(𝑠, 𝑠′) = min

𝑠𝑚
{𝑉𝑘−1(𝑠, 𝑠𝑚) + 𝑉𝑘−1(𝑠𝑚, 𝑠′)} ∀𝑠, 𝑠′ :𝑠 ≠ 𝑠′

𝑉0(𝑠, 𝑠′) = 𝑐(𝑠, 𝑠′) ∀𝑠, 𝑠′

s
s′

sm

Sub-Goal Tree Dynamic Programming
• length of shortest path in steps or less

• Obeys dynamic programming equations:

• Dependence on is important —> similar to finite horizon DP!

𝑉𝑘(𝑠, 𝑠′): 𝑠 → 𝑠′ 2𝑘

k

𝑉𝑘(𝑠, 𝑠) = 0 ∀𝑠
𝑉𝑘(𝑠, 𝑠′) = min

𝑠𝑚
{𝑉𝑘−1(𝑠, 𝑠𝑚) + 𝑉𝑘−1(𝑠𝑚, 𝑠′)} ∀𝑠, 𝑠′ :𝑠 ≠ 𝑠′

𝑉0(𝑠, 𝑠′) = 𝑐(𝑠, 𝑠′) ∀𝑠, 𝑠′

Sub-Goal Tree Dynamic Programming
• length of shortest path in steps or less

• Obeys dynamic programming equations:

𝑉𝑘(𝑠, 𝑠′): 𝑠 → 𝑠′ 2𝑘

𝑉𝑘(𝑠, 𝑠) = 0 ∀𝑠
𝑉𝑘(𝑠, 𝑠′) = min

𝑠𝑚
{𝑉𝑘−1(𝑠, 𝑠𝑚) + 𝑉𝑘−1(𝑠𝑚, 𝑠′)} ∀𝑠, 𝑠′ :𝑠 ≠ 𝑠′

𝑉0(𝑠, 𝑠′) = 𝑐(𝑠, 𝑠′) ∀𝑠, 𝑠′

Theorem: For we have:
 is the length of shortest path from to , for all .

𝑘 ≥ log2𝑁,
𝑉𝑘(𝑠, 𝑠′) 𝑠 𝑠′ 𝑠, 𝑠′

Worst case running time 𝑂(𝑁3log𝑁)

Sub-goal Trees - What’s next?

1. DP principle for APSP RL

2. SGT is provably more efficient
3. New RL algorithms based on SGT

1. Value based - Fitted SGT-DP

2. High dim. Problems with SGT-PG

SGT Approximate Dynamic Programming
• Key in RL – function approximation (large state space)

• How does SGT handle approximations?

SGT Approximate Dynamic Programming
• Key in RL – function approximation (large state space)

• How does SGT handle approximations?

• Define the SGT operator :

• Approximate SGT iterations:

𝑇

(𝑇𝑉)(s, s′) = min
𝑠𝑚

{𝑉(𝑠, 𝑠𝑚) + 𝑉 (𝑠𝑚, 𝑠′)}
𝑉̂𝑘+1 − 𝑇𝑉̂𝑘 ∞

≤ 𝜖

SGT Approximate Dynamic Programming
• Key in RL – function approximation (large state space)

• How does SGT handle approximations?

• Define the SGT operator :

• Approximate SGT iterations:

• Error propagation?

𝑇

(𝑇𝑉)(s, s′) = min
𝑠𝑚

{𝑉(𝑠, 𝑠𝑚) + 𝑉 (𝑠𝑚, 𝑠′)}
𝑉̂𝑘+1 − 𝑇𝑉̂𝑘 ∞

≤ 𝜖

SGT Approximate Dynamic Programming
• Error propagation:

• Value error for Bellman and SGT𝑂(𝑁𝜖)

SGT Approximate Dynamic Programming
• Error propagation:

• Value error for Bellman and SGT

• But what about the resulting trajectory?

• Greedy w.r.t. value function

𝑂(𝑁𝜖)

SGT Approximate Dynamic Programming
• Error propagation:

• Value error for Bellman and SGT

• But what about the resulting trajectory?

• Greedy w.r.t. value function

• Bellman RL error accumulation:

𝑂(𝑁𝜖)

O(N2ϵ)

SGT Approximate Dynamic Programming
• Error propagation:

• Value error for Bellman and SGT

• But what about the resulting trajectory?

• Greedy w.r.t. value function

• Bellman RL error accumulation:

𝑂(𝑁𝜖)

O(N2ϵ)

s
s′ Nϵ

(N − 1)ϵ

(N − 2)ϵ
ϵ

Grows linearly with
distance from goal!

SGT Approximate Dynamic Programming
• Error propagation:

• Value error for Bellman and SGT

• But what about the resulting trajectory?

• Greedy w.r.t. value function

• Bellman RL error accumulation:

• SGT error accumulation: !

𝑂(𝑁𝜖)

O(N2ϵ)

O(N log2 Nϵ)

SGT Approximate Dynamic Programming
• Error propagation:

• Value error for Bellman and SGT

• But what about the resulting trajectory?

• Greedy w.r.t. value function

• Bellman RL error accumulation:

• SGT error accumulation: !

𝑂(𝑁𝜖)

O(N2ϵ)

O(N log2 Nϵ)
s

s′

Nϵ
0.5Nϵ 0.5Nϵ

0.25Nϵ
0.25Nϵ

0.25Nϵ

0.25Nϵ

Error decreases
exponentially!

SGT Approximate Dynamic Programming
• Error propagation:

• Value error for Bellman and SGT

• But what about the resulting trajectory?

• Greedy w.r.t. value function

• Bellman RL error accumulation:

• SGT error accumulation: !

𝑂(𝑁𝜖)

O(N2ϵ)

O(N log2 Nϵ)

Less drift with SGT
trajectories!

Sub-goal Trees - What’s next?

1. DP principle for APSP RL

2. SGT is provably more efficient

3. New RL algorithms based on SGT

1. Value based - Fitted SGT-DP

2. High dim. Problems with SGT-PG

Recap

s
s′

sm

Vk(s, s′) = min
sm

{Vk−1(s, sm) + Vk−1(sm, s′)}

• So far - SGT = a new approximate DP framework

Recap
• So far - SGT = a new approximate DP framework

• Develop new RL algorithms!

Fitted SGT-DP - value-based algorithm

Off-policy batch RL data: tuples

At iteration :

1. Sample states, goals from data

2. Generate regression targets:

3. Fit new value function:

(𝑠, 𝑠′ , 𝑐)

𝑘

{𝑠, 𝑔}
𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = min

𝑠𝑚
{𝑉̂𝑘−1(𝑠, 𝑠𝑚) + 𝑉̂𝑘−1(𝑠𝑚, 𝑔)}

𝑉̂𝑘 = 𝐹𝑖𝑡(𝑉𝑡𝑎𝑟𝑔𝑒𝑡)

Fitted SGT-DP - value-based algorithm

Off-policy batch RL data: tuples

At iteration :

1. Sample states, goals from data

2. Generate regression targets:

3. Fit new value function:

(𝑠, 𝑠′ , 𝑐)

𝑘

{𝑠, 𝑔}
𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = min

𝑠𝑚
{𝑉̂𝑘−1(𝑠, 𝑠𝑚) + 𝑉̂𝑘−1(𝑠𝑚, 𝑔)}

𝑉̂𝑘 = 𝐹𝑖𝑡(𝑉𝑡𝑎𝑟𝑔𝑒𝑡)

Fitted SGT-DP - value-based algorithm

Off-policy batch RL data: tuples

At iteration :

1. Sample states, goals from data

2. Generate regression targets:

3. Fit new value function:

(𝑠, 𝑠′ , 𝑐)

𝑘

{𝑠, 𝑔}
𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = min

𝑠𝑚
{𝑉̂𝑘−1(𝑠, 𝑠𝑚) + 𝑉̂𝑘−1(𝑠𝑚, 𝑔)}

𝑉̂𝑘 = 𝐹𝑖𝑡(𝑉𝑡𝑎𝑟𝑔𝑒𝑡) Grid search over sm

Off-policy batch RL data: tuples

At iteration :

1. Sample states, goals from data

2. Generate regression targets:

3. Fit new value function:

(𝑠, 𝑠′ , 𝑐)

𝑘

{𝑠, 𝑔}
𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = min

𝑠𝑚
{𝑉̂𝑘−1(𝑠, 𝑠𝑚) + 𝑉̂𝑘−1(𝑠𝑚, 𝑔)}

𝑉̂𝑘 = 𝐹𝑖𝑡(𝑉𝑡𝑎𝑟𝑔𝑒𝑡)

Fitted SGT-DP - value-based algorithm

What about actions?

• Learn inverse model

 Easy if data =

• Use standard goal-based  
RL for low level actions

(𝑠, 𝑠′) → 𝑎

(𝑠, 𝑎, 𝑠′ , 𝑐)

Fitted SGT-DP: 2D Point Robot Results

High cost inside
obstacles!

Fitted SGT-DP: 2D Point Robot Results

Model Distance to
goal

Fitted Q
iteration 0.58

Fitted SGT-DP
(ours) 0.13

Off-policy batch RL data: tuples

At iteration :

1. Sample states, goals from data

2. Generate regression targets:

3. Fit new value function:

(𝑠, 𝑠′ , 𝑐)

𝑘

{𝑠, 𝑔}
𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = min

𝑠𝑚
{𝑉̂𝑘−1(𝑠, 𝑠𝑚) + 𝑉̂𝑘−1(𝑠𝑚, 𝑔)}

𝑉̂𝑘 = 𝐹𝑖𝑡(𝑉𝑡𝑎𝑟𝑔𝑒𝑡)

Fitted SGT-DP - high dim states?

How to handle
high-dim states?

• Stochastic policy for next sub-goal with parameters 𝜋𝜃(𝑠𝑚 |𝑠, 𝑠′) θ

SGT Policy Gradient (SGT-PG)

s0 gs1 s2 s3 s4 s5 s6 s7

k=3

k=2k=2
k=1 k=1k=1k=1

• Stochastic policy for next sub-goal with parameters

• Find that minimizes the trajectory cost:

𝜋𝜃(𝑠𝑚 |𝑠, 𝑠′) θ

θ

SGT Policy Gradient (SGT-PG)

s0 gs1 s2 s3 s4 s5 s6 s7

k=3

k=2k=2
k=1 k=1k=1k=1

• Policy gradient theorem for SGT:

SGT Policy Gradient (SGT-PG)

• Policy gradient theorem for SGT:

s0 gs1 s2 s3 s4 s5 s6 s7

k=3

k=2k=2
k=1 k=1k=1k=1

Sum of costs in segment

SGT Policy Gradient (SGT-PG)

• Policy gradient theorem for SGT:

s0 gs1 s2 s3 s4 s5 s6 s7

k=3

k=2k=2
k=1 k=1k=1k=1

Sum of costs in segment
Can also add standard  
tricks: baseline,  
trust region, etc.

SGT Policy Gradient (SGT-PG)

• Continuous motion planning

• 7 DoF robot arm

• Obstacles, self-collisions

• Reach from any state to any goal

• NN predicts sub-goals

• Linear motion between sub-goals

SGT-PG - Experiments

SGT-PG - Trajectory Example

Start Goal
Sub-goal

SGT-PG - Trajectory Example

Start Goal
Sub-goal

Sub-goal Sub-goal

Start Goal
Sub-goal

Sub-goal Sub-goal

Start Goal
Sub-goal

Sub-goal Sub-goal

SGT-PG - Trajectory Example

SGT-PG - Coverage of State Space!

Conclusion
• SGT - New multi-goal RL framework

• First principle – all-pairs shortest path

• Provably more efficient in multi-goal setting

• Basis for many new algorithms

Conclusion
• SGT - New multi-goal RL framework

• First principle – all-pairs shortest path

• Provably more efficient in multi-goal setting

• Basis for many new algorithms

• Future work

• Stochastic systems (e.g., update plan MPC fashion)

• Exploration

• High-dim observations (images)

Conclusion
• SGT - New multi-goal RL framework

• First principle – all-pairs shortest path

• Provably more efficient in multi-goal setting

• Basis for many new algorithms

• Future work

• Stochastic systems (e.g., update plan MPC fashion)

• Exploration

• High-dim observations (images)

Come find us in the virtual poster
session!

or reach out:
tomj@campus.technion.ac.il

