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Motivation: multi-goal reinforcement learning

 Multi-goal task: agent needs to reach different goals
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Motivation: multi-goal reinforcement learning

 Multi-goal task: agent needs to reach different goals

* Frequently encountered in robotics / game-playing etc. :
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* Motion planning

» Skill learning




Motivation: single —> multi goal-RL

RL is single-goal (cost function)
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Motivation: single —> multi goal-RL

RL is single-goal (cost function)



Motivation: single —> multi goal-RL

RL is single-goal (cost function)

So far: UVFADN, HERI2l, many others

 Add goal > state observation

* [rain using standard RL

[1] Schaul et al, Universal Value Function Approximators, 2015
[2] Andrychowicz et al. Hindsight Experience Replay, 2017
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Motivation: single —> multi goal-RL

RL is single-goal (cost function)

So far: UVFAU, HE

» Add goal Is that optimal?

* [rain using

[1] Schaul et al, Universal Value Function Approximators, 2015
[2] Andrychowicz et al. Hindsight Experience Replay, 2017




Intuition: utilizing problem structure?

Consider: All-Pairs-Shortest-Path (APSP) problem

 Bellman RL approach = Bellman-Ford on all starts
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Intuition: utilizing problem structure?

Consider: All-Pairs-Shortest-Path (APSP) problem
 Bellman RL approach = Bellman-Ford on all starts — 0

* Floyd-Warshal is faster! — 0



Intuition: utilizing problem structure?

Structure to the
problem we can
exploit!

Consider: All-Pairs-Sh
 Bellman RL appro:s

* Floyd-Warshal is faSte



Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!



Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“Bellman” RL.:
g
What is the next min cost state? /\/\/\//,?

50> 8 50



Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“Bellman” RL.:
What is the next min cost state?

S()agj
51




Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“Bellman” RL.:
What is the next min cost state?

So, g ’W 50

Sla gj
57




Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!




Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“SGT” RL:

What is the middle min cost state?

(middle state = subgoal)




Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“SGT” RL:

What is the middle min cost state?

(middle state = subgoal)




Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“SGT” RL:

What is the middle min cost state?

(middle state = subgoal)




Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“SGT” RL:

What is the middle min cost state? S1 S

(middle state = subgoal)




Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“Bellman” RL.:

What is the next min cost state?

“SGT” RL:

What is the middle min cost state?

(middle state = subgoal)
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Sub-goal Trees - What'’s next?

1. DP principle for APSP RL

2. SGT is provably more efficient

3. New RL algorithms based on SGT
1. Value based - Fitted SGT-DP
2. High dim. Problems with SGT-PG
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Background: Bellman’s Equation

Bellman'’s principle of optimality
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Immediate Proceed

cost optimally




Background: Bellman’s Equation

Bellman'’s principle of optimality

 Value function

V(s) = minkE

In SGT RL.:

* Bellman’s equation
Decompose by subgoal

Vi(s) = min{ ¢(s)

Immediate Proceed
cost optimally



All-pairs shortest-path (APSP)

* Directed, weighted graph

* Describes a deterministic MDP e(s.5")

« N nodes, weights c(s, s’) > 0
e ¢(5,5)=20




All-pairs shortest-path (APSP)

* Directed, weighted graph

c(s,s’) = o0

* Describes a deterministic MDP e(s.5")

« N nodes, weights c(s, s’) > 0
e ¢(5,5)=20

* Unconnected edge =2 infinite weight




All-pairs shortest-path (APSP)

Directed, weighted graph

Describes a deterministic MDP

N nodes, weights ¢(s,s’) > 0

c(s,s) =0

Unconnected edge =2

Objective:

For any s, g:

1111l
Tv'SO:'Sa'Sla"'aST—laST:g

c(s,s’)

infinite weight

1'—1

Z c(St, Sta1)

t=0

c(s,s’) = o0




Sub-Goal Tree Dynamic Programming

o V. (s,s’): length of shortest path s — s in Dk steps or less

* Obeys dynamic programming eguations:
Vo(s, s”) = c(s, s’) Vs,s'
Vi(s,s) =0 Vs
Vi.(s,s") = min{ I/k—1<S9 Sm) + Vi_1(s,, S’)} Vs,s':s # s

Sm
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Sub-Goal Tree Dynamic Programming

o V. (s,s’): length of shortest path s — s in Dk steps or less

* Obeys dynamic programming eguations:
Vo(s, s”) = c(s, s’) Vs,s'
Vi(s,s) =0 Vs
Vi.(s,s") = min{ I/k—1<S9 Sm) + Vi_1(s,, S’)} Vs,s':s # s

Sm

» Dependence on k is important —> similar to finite horizon DP!



Sub-Goal Tree Dynamic Programming

o V. (s,s’): length of shortest path s — s in Dk steps or less
 Obeys dynamic programming equations:
Vo(s, s”) = c(s, s’) Vs,s'
Vi(s,s) =0 Vs
Vi.(s,s") = min{ Vk_l(s, Sm) + Vi_1(s,, S’)} Vs,s':s # s

Sm

Theorem: For k > log, N, we have:
V,.(s, s”) is the length of shortest path from s to s’, for all s, s".

O(N3logN)



Sub-goal Trees - What'’s next?

1. DP principle for APSP RL

2. SGT is provably more efficient

3. New RL algorithms based on SGT
1. Value based - Fitted SGT-DP
2. High dim. Problems with SGT-PG




SGT Approximate Dynamic Programming

 Key in RL - function approximation (large state space)

« How does SGT handle approximations?
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 Key in RL - function approximation (large state space)

« How does SGT handle approximations?

« Define the SGT operator 1:
(TV)(s,s") = min{ V(S, Sm) + V(s,, S’)}

m

* Approximate SGT iterations:
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Vieir = 1Vi|| <€
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SGT Approximate Dynamic Programming

 Key in RL - function approximation (large state space)

How does SGT handle approximations®?

Define the SGT operator 1:

(TV)(s,s) = min{ V(S, Sm)

Approximate SGT iterations:

Error propagation?

m

N\ N\
Vier — 1V

o0

< €



SGT Approximate Dynamic Programming

* Error propagation;

 Value error O(Ne¢) for Bellman and SGT



SGT Approximate Dynamic Programming

* Error propagation:
 Value error O(Ne¢) for Bellman and SGT

 But what about the resulting trajectory??

* Greedy w.r.t. value function



SGT Approximate Dynamic Programming

* Error propagation:
 Value error O(Ne¢) for Bellman and SGT

 But what about the resulting trajectory??

* Greedy w.r.t. value function

. Bellman RL error accumulation: O(N?¢)



SGT Approximate Dynamic Programming

* Error propagation;

 Value error O(Ne¢) for Bellman and SGT

Grows linearly with

* But what about the resulting trajectory? distance from goal!

* Greedy w.r.t. value function

. Bellman RL error accumulation: O(N?¢)

S €
(N — 1e



SGT Approximate Dynamic Programming

* Error propagation:
 Value error O(Ne¢) for Bellman and SGT

 But what about the resulting trajectory??

* Greedy w.r.t. value function
. Bellman RL error accumulation: O(N?¢)

» SGT error accumulation: O(N log, Ne)!



SGT Approximate Dynamic Programming

* Error propagation;

 Value error O(Ne¢) for Bellman and SGT

Error decreases

 But what about the resulting trajectory? exponentially!

* Greedy w.r.t. value function
. Bellman RL error accumulation: O(N?¢)

. 2 2 \)
» SGT error accumulation: O(N log, Ne)! oy
\) 0.25Ne

0.5Ne 0.5Ne
Ne



SGT Approximate Dynamic Programming

* Error propagation:
 Value error O(Ne¢) for Bellman and SGT

e But what about the resultii

 Greedy w.r.t. value fu Less drift with SGT

trajectories!
e Bellman RL error acc

» SGT error accumulation: O(N log, Ne)!



Sub-goal Trees - What'’s next?

1. DP principle for APSP RL

2. SGT Is provably more efficient

3. New RL algorithms based on SGT
1. Value based - Fitted SGT-DP
2. High dim. Problems with SGT-PG




Recap

e So far - SGT = a new approximate DP framework




Recap

e So far - SGT = a new approximate DP framework

* Develop new RL algorithms!



Fitted SGT-DP - value-based algorithm

Off-policy batch RL data: (s, s’, ¢) tuples
At iteration k:

1. Sample states, goals from data {S, g}

N\ N\
2. (Generate regression targets: Vm,,get — min{ Vi1 (S, Sm) + Vi_1(s,,, g)}
S

m

/\
3. Fit new value function: Vj, = Fit(V, )
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Fitted SGT-DP - value-based algorithm

Off-policy batch RL data: (s, s’, ¢) tuples
At iteration k:

1. Sample states, goals from data {S, g}

2. Generate regression targets: V..., = mm{Vk (s, s ) + Vk 1(s,, g)}

3. Fit new value function: Vk — Flt(Vm,,get) L
Grld search over s,



Fitted SGT-DP - value-based algorithm

What about actions?

At iteration k:

e Learn inverse model (s,s’) — a
1. Sample states, « ( )

Easy if data = (s, a, s/, ¢)

N\
2. (Generate regres m) + Vk—l(Sma g)}

Use standard goal-based
RL for low level actions

3. Fit new value fu



Fitted SGT-DP: 2D Point Robot Results
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Fitted SGT-DP: 2D Point Robot Results
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Fitted SGT-DP - high dim states”?

Off-policy batch RL data: (s, s’, ¢) tuples

At iteration k: How to handle

high-dim states?

1. Sample states, goals from da

N\
2. Generate regression targets: V..., = Vk_l(s, Sm)
Sm

N\
3. Fit new value function: V), = Fit(V,

arget)



SGT Policy Gradient (SGT-PQG)

» Stochastic policy for next sub-goal 7,(s,, | s, s’) with parameters 0

k=3
k=2 k=2
mm 1
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SGT Policy Gradient (SGT-PQG)

» Stochastic policy for next sub-goal 7,(s,, | s, s’) with parameters 0

k=3

k=2 k=2

Val Nl O\ -1 =1
® ® ® ® ® ® & @

}:Tr[ﬂs,g] = Pr{so,...,srl|s, 9]

—

» Find 6 that minimizes the trajectory cost:

J(@) — JT"O w— 4:’7'N,0(7T0) [CT]




SGT Policy Gradient (SGT-PQG)

* Policy gradient theorem for SGT:

VoJ(0) = E,x,) |¢r - Volog Pr 7]

p(me) |

B p oD—d

o id iyd| i,d id
= E,(rp) E E C % Vg log mo (sm s, Qg
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SGT Policy Gradient (SGT-PQG)

* Policy gradient theorem for SGT:

VoJ(0) = Eyr,) |¢r - Volog Pr [7]

p(me)

P o _
o iyd ivd| i, d id
= E,(rp) E E C2%- Vg log me (sm s, Qg )

d=1 21=1

Sum of costs in segment




SGT Policy Gradient (SGT-PQG)

* Policy gradient theorem for SGT:

VoJ(0) = E,x,) |¢r - Volog Pr 7]

p(me) |

4“
— Lp(me)

d| id id
S, )

Can also add standard
tricks: baseline,
trust region, etc.




SGT-PG - Experiments

* Continuous motion planning

e 7/ DoF robot arm

 Obstacles, self-collisions
 Reach from any state to any goal
NN predicts sub-goals

* Linear motion between sub-goals




SGT-PG - Trajectory Example

r

Start

g

Sub-goal

e

Goal




SGT-PG - Trajectory Example
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SGT-PG - Trajectory Example

self-
collision
1.10.

1.+0.
Start 0.006.40, Goal

1.10.
0.983+0.
0.88+0.




SGT-PG - Coverage of State Space!
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Conclusion

 SGT - New multi-goal RL framework
* First principle — all-pairs shortest path
* Provably more efficient in multi-goal setting

» Basis for many new algorithms



Conclusion

 SGT - New multi-goal RL framework
* First principle — all-pairs shortest path
* Provably more efficient in multi-goal setting
» Basis for many new algorithms
* Future work
o Stochastic systems (e.g., update plan MPC fashion)
* EXxploration

* High-dim observations (images)



Conclusion

+ SGT - Neysanbiaaal Ol fuamau

 First p
. Prova Come find us in the virtual poster
. Basis 1 session!
e Future
or reach out:
o Stoche - - -
tomj@campus.technion.ac.ll
 EXxplor
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