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• Frequently encountered in robotics / game-playing etc. :


• Motion planning 


• Skill learning
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So far: UVFA[1], HER[2], many others 


• Add goal ! state observation


• Train using standard RL


[2] Andrychowicz et al. Hindsight Experience Replay, 2017
[1] Schaul et al, Universal Value Function Approximators, 2015

Goal 1

s

State=
(s, g)

Goal 2

g

“Bellman RL”Is that optimal?



Intuition: utilizing problem structure? 

Consider: All-Pairs-Shortest-Path (APSP) problem


• Bellman RL approach = Bellman-Ford on all starts



Intuition: utilizing problem structure? 

Consider: All-Pairs-Shortest-Path (APSP) problem


• Bellman RL approach = Bellman-Ford on all starts → O ( |V |4 )



Intuition: utilizing problem structure? 

Consider: All-Pairs-Shortest-Path (APSP) problem


• Bellman RL approach = Bellman-Ford on all starts


• Floyd-Warshal is faster!

→ O ( |V |4 )
→ O ( |V |3 )



Intuition: utilizing problem structure? 

Consider: All-Pairs-Shortest-Path (APSP) problem


• Bellman RL approach = Bellman-Ford on all starts


• Floyd-Warshal is faster!

→ O ( |V |4 )
→ O ( |V |3 )

Structure to the 
problem we can 

exploit!
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Our approach: Sub-goal Tree (SGT)

“Bellman” RL:
What is the next min cost state?
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New APSP formulation for multi-goal RL w/o the Bellman-Eq.!



Sub-goal Trees - What’s next?

1. DP principle for APSP RL 
2. SGT is provably more efficient 

3. New RL algorithms based on SGT


1. Value based - Fitted SGT-DP

2. High dim. Problems with SGT-PG
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Bellman RL: 


Decompose by next state


In SGT RL: 


Decompose by subgoal


Background: Bellman’s Equation
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All-pairs shortest-path (APSP)
• Directed, weighted graph


• Describes a deterministic MDP


•  nodes, weights  

•  

• Unconnected edge ! infinite weight 

• Objec&ve: 

𝑁 𝑐(𝑠, 𝑠’) ≥ 0
𝑐(𝑠, 𝑠) = 0

For any :𝑠, 𝑔

𝑠

𝑠’𝑐(𝑠, 𝑠’)

𝑐(𝑠, 𝑠’) = ∞



Sub-Goal Tree Dynamic Programming 
•  length of shortest path  in  steps or less  

• Obeys dynamic programming equations:
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𝑉0(𝑠, 𝑠′ ) = 𝑐(𝑠, 𝑠′ ) ∀𝑠, 𝑠′ 
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Sub-Goal Tree Dynamic Programming
•  length of shortest path  in  steps or less  

• Obeys dynamic programming equations:


• Dependence on  is important —> similar to finite horizon DP!

𝑉𝑘(𝑠, 𝑠′ ): 𝑠 → 𝑠′ 2𝑘

k
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Sub-Goal Tree Dynamic Programming
•  length of shortest path  in  steps or less  

• Obeys dynamic programming equations:

𝑉𝑘(𝑠, 𝑠′ ): 𝑠 → 𝑠′ 2𝑘

𝑉𝑘(𝑠, 𝑠) = 0 ∀𝑠
𝑉𝑘(𝑠, 𝑠′ ) = min

𝑠𝑚
{𝑉𝑘−1(𝑠, 𝑠𝑚) + 𝑉𝑘−1(𝑠𝑚, 𝑠′ )}  ∀𝑠, 𝑠′ :𝑠 ≠ 𝑠′ 

𝑉0(𝑠, 𝑠′ ) = 𝑐(𝑠, 𝑠′ ) ∀𝑠, 𝑠′ 

Theorem: For  we have:  
                   is the length of shortest path from  to , for all .

𝑘 ≥ log2𝑁,
𝑉𝑘(𝑠, 𝑠′ ) 𝑠 𝑠′ 𝑠, 𝑠′ 

Worst case running time  𝑂(𝑁3log𝑁)
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SGT Approximate Dynamic Programming
• Key in RL – function approximation (large state space)


• How does SGT handle approximations?


• Define the SGT operator :


• Approximate SGT iterations: 


• Error propagation?
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SGT Approximate Dynamic Programming
• Error propagation:


• Value error  for Bellman and SGT


• But what about the resulting trajectory?


• Greedy w.r.t. value function


• Bellman RL error accumulation: 
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O(N2ϵ)
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SGT Approximate Dynamic Programming
• Error propagation:


• Value error  for Bellman and SGT


• But what about the resulting trajectory?


• Greedy w.r.t. value function


• Bellman RL error accumulation: 


• SGT error accumulation: !

𝑂(𝑁𝜖)

O(N2ϵ)

O(N log2 Nϵ)
s

s′ 

Nϵ
0.5Nϵ 0.5Nϵ

0.25Nϵ
0.25Nϵ

0.25Nϵ

0.25Nϵ

Error decreases 
exponentially! 



SGT Approximate Dynamic Programming
• Error propagation:


• Value error  for Bellman and SGT


• But what about the resulting trajectory?


• Greedy w.r.t. value function


• Bellman RL error accumulation: 


• SGT error accumulation: !

𝑂(𝑁𝜖)

O(N2ϵ)

O(N log2 Nϵ)

Less drift with SGT 
trajectories!



Sub-goal Trees - What’s next?

1. DP principle for APSP RL

2. SGT is provably more efficient 

3. New RL algorithms based on SGT 

1. Value based - Fitted SGT-DP

2. High dim. Problems with SGT-PG
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Vk(s, s′ ) = min
sm

{Vk−1(s, sm) + Vk−1(sm, s′ )}

• So far - SGT = a new approximate DP framework



Recap
• So far - SGT = a new approximate DP framework


• Develop new RL algorithms!



Fitted SGT-DP - value-based algorithm

Off-policy batch RL data:  tuples 

At iteration :


1. Sample states, goals from data 


2. Generate regression targets: 


3. Fit new value function: 


(𝑠, 𝑠′ , 𝑐)

𝑘

{𝑠, 𝑔}
𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = min

𝑠𝑚
{𝑉̂𝑘−1(𝑠, 𝑠𝑚) + 𝑉̂𝑘−1(𝑠𝑚, 𝑔)}

𝑉̂𝑘 = 𝐹𝑖𝑡(𝑉𝑡𝑎𝑟𝑔𝑒𝑡)
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Fitted SGT-DP - value-based algorithm

Off-policy batch RL data:  tuples 

At iteration :


1. Sample states, goals from data 


2. Generate regression targets: 


3. Fit new value function: 


(𝑠, 𝑠′ , 𝑐)

𝑘

{𝑠, 𝑔}
𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = min

𝑠𝑚
{𝑉̂𝑘−1(𝑠, 𝑠𝑚) + 𝑉̂𝑘−1(𝑠𝑚, 𝑔)}

𝑉̂𝑘 = 𝐹𝑖𝑡(𝑉𝑡𝑎𝑟𝑔𝑒𝑡) Grid search over sm



Off-policy batch RL data:  tuples 

At iteration :


1. Sample states, goals from data 


2. Generate regression targets: 


3. Fit new value function: 


(𝑠, 𝑠′ , 𝑐)

𝑘

{𝑠, 𝑔}
𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = min

𝑠𝑚
{𝑉̂𝑘−1(𝑠, 𝑠𝑚) + 𝑉̂𝑘−1(𝑠𝑚, 𝑔)}

𝑉̂𝑘 = 𝐹𝑖𝑡(𝑉𝑡𝑎𝑟𝑔𝑒𝑡)

Fitted SGT-DP - value-based algorithm

What about actions?


• Learn inverse model 


     Easy if data = 


• Use standard goal-based  
RL for low level actions 

(𝑠, 𝑠′ ) → 𝑎

(𝑠, 𝑎, 𝑠′ , 𝑐)



Fitted SGT-DP: 2D Point Robot Results

High cost inside 
obstacles!



Fitted SGT-DP: 2D Point Robot Results

Model Distance to 
goal

Fitted Q 
iteration 0.58

Fitted SGT-DP 
(ours) 0.13



Off-policy batch RL data:  tuples 

At iteration :


1. Sample states, goals from data 


2. Generate regression targets: 


3. Fit new value function: 


(𝑠, 𝑠′ , 𝑐)

𝑘

{𝑠, 𝑔}
𝑉𝑡𝑎𝑟𝑔𝑒𝑡 = min

𝑠𝑚
{𝑉̂𝑘−1(𝑠, 𝑠𝑚) + 𝑉̂𝑘−1(𝑠𝑚, 𝑔)}

𝑉̂𝑘 = 𝐹𝑖𝑡(𝑉𝑡𝑎𝑟𝑔𝑒𝑡)

Fitted SGT-DP - high dim states?

How to handle 
high-dim states?



•  Stochastic policy for next sub-goal  with parameters 𝜋𝜃(𝑠𝑚 |𝑠, 𝑠′ ) θ

SGT Policy Gradient (SGT-PG)
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•  Stochastic policy for next sub-goal  with parameters 


• Find  that minimizes the trajectory cost: 

𝜋𝜃(𝑠𝑚 |𝑠, 𝑠′ ) θ

θ

SGT Policy Gradient (SGT-PG)

s0 gs1 s2 s3 s4 s5 s6 s7
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k=1 k=1k=1k=1



• Policy gradient theorem for SGT:

SGT Policy Gradient (SGT-PG)



• Policy gradient theorem for SGT:

s0 gs1 s2 s3 s4 s5 s6 s7
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k=1 k=1k=1k=1

Sum of costs in segment

SGT Policy Gradient (SGT-PG)



• Policy gradient theorem for SGT:

s0 gs1 s2 s3 s4 s5 s6 s7

k=3

k=2k=2
k=1 k=1k=1k=1

Sum of costs in segment
Can also add standard  
tricks: baseline,  
trust region, etc.

SGT Policy Gradient (SGT-PG)



• Continuous motion planning

• 7 DoF robot arm

• Obstacles, self-collisions

• Reach from any state to any goal

• NN predicts sub-goals

• Linear motion between sub-goals

SGT-PG - Experiments
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SGT-PG - Trajectory Example



SGT-PG - Coverage of State Space!
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Come find us in the virtual poster 
session! 

or reach out: 
tomj@campus.technion.ac.il 


