Sub-Goal Trees — a Framework for
Goal-Based Reinforcement Learning

Tom Jurgenson, Or Avner, Edward Groshev, Aviv Tamar

oA

2
(R:) Reinforcement Learning [1'300n TECHNION
121712 Israel Institute

U 19N u
Research [Labs p) el L] of Technology

Motivation: multi-goal reinforcement learning

 Multi-goal task: agent needs to reach different goals

. (GoaH |

T/)

O e

o

Motivation: multi-goal reinforcement learning

 Multi-goal task: agent needs to reach different goals

* Frequently encountered in robotics / game-playing etc. :

Goal 1!
.y (0+l
et \O\I ks o
LS g

O
o

* Motion planning

» Skill learning

Motivation: single —> multi goal-RL

RL is single-goal (cost function)

i
O

=

s S\\\i

O\

Goal

Motivation: single —> multi goal-RL

RL is single-goal (cost function)

Motivation: single —> multi goal-RL

RL is single-goal (cost function)

So far: UVFADN, HERI2l, many others

 Add goal > state observation

* [rain using standard RL

[1] Schaul et al, Universal Value Function Approximators, 2015
[2] Andrychowicz et al. Hindsight Experience Replay, 2017

Motivation: single —> multi goal-RL

RL is single-goal (cost function)

So far: UVFAU, HE

e Add goa| “Be"man RL”

* [rain using

[1] Schaul et al, Universal Value Function Approximators, 2015
[2] Andrychowicz et al. Hindsight Experience Replay, 2017

Motivation: single —> multi goal-RL

RL is single-goal (cost function)

So far: UVFAU, HE

» Add goal Is that optimal?

* [rain using

[1] Schaul et al, Universal Value Function Approximators, 2015
[2] Andrychowicz et al. Hindsight Experience Replay, 2017

Intuition: utilizing problem structure?

Consider: All-Pairs-Shortest-Path (APSP) problem

 Bellman RL approach = Bellman-Ford on all starts

Intuition: utilizing problem structure?

Consider: All-Pairs-Shortest-Path (APSP) problem

 Bellman RL approach = Bellman-Ford on all starts — O (| V\4)

Intuition: utilizing problem structure?

Consider: All-Pairs-Shortest-Path (APSP) problem
 Bellman RL approach = Bellman-Ford on all starts — 0

* Floyd-Warshal is faster! — 0

Intuition: utilizing problem structure?

Structure to the
problem we can
exploit!

Consider: All-Pairs-Sh
 Bellman RL appro:s

* Floyd-Warshal is faSte

Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“Bellman” RL.:
g
What is the next min cost state? /\/\/\//,?

50> 8 50

Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“Bellman” RL.:
What is the next min cost state?

S()agj
51

Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“Bellman” RL.:
What is the next min cost state?

So, g ’W 50

Sla gj
57

Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“SGT” RL:

What is the middle min cost state?

(middle state = subgoal)

Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“SGT” RL:

What is the middle min cost state?

(middle state = subgoal)

Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“SGT” RL:

What is the middle min cost state?

(middle state = subgoal)

Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“SGT” RL:

What is the middle min cost state? S1 S

(middle state = subgoal)

Our approach: Sub-goal Tree (SGT)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

“Bellman” RL.:

What is the next min cost state?

“SGT” RL:

What is the middle min cost state?

(middle state = subgoal)

508 ™
S, 8
S29 g j
—~
57
/ SO, g \
505 94 545

Sub-goal Trees - What'’s next?

1. DP principle for APSP RL

2. SGT is provably more efficient

3. New RL algorithms based on SGT
1. Value based - Fitted SGT-DP
2. High dim. Problems with SGT-PG

Background: Bellman’s Equation

Bellman'’s principle of optimality

 Value function

V(s) = min ”(Z c(st,)

n /
=t

StZS)

Background: Bellman’s Equation

Bellman'’s principle of optimality

 Value function

V(s) = min ”(Z c(st,)

n /
=t

S, = S)
* Bellman’s equation

Vi(s) = min{ (s) + E(V7i, () |) |
Immediate Proceed

cost optimally

Background: Bellman’s Equation

Bellman'’s principle of optimality

Start
|
 Value function -
T ‘ a o O
- \\ O (O e,
I/t (S) B C<Sf') St = ' v/ ? 521
/4 t'—¢ O g
_ . o

P

f”
-
-
-
—————

* Bellman’s equation

Vi(s) = min{ (s) + E(V7i, () |) |
Immediate Proceed

cost optimally

Background: Bellman’s Equation

Bellman'’s principle of optimality

 Value function

V(s) = minkE

In SGT RL.:

* Bellman’s equation
Decompose by subgoal

Vi(s) = min{ ¢(s)

Immediate Proceed
cost optimally

All-pairs shortest-path (APSP)

* Directed, weighted graph

* Describes a deterministic MDP e(s.5")

« N nodes, weights c(s, s’) > 0
e ¢(5,5)=20

All-pairs shortest-path (APSP)

* Directed, weighted graph

c(s,s’) = o0

* Describes a deterministic MDP e(s.5")

« N nodes, weights c(s, s’) > 0
e ¢(5,5)=20

* Unconnected edge =2 infinite weight

All-pairs shortest-path (APSP)

Directed, weighted graph

Describes a deterministic MDP

N nodes, weights ¢(s,s’) > 0

c(s,s) =0

Unconnected edge =2

Objective:

For any s, g:

1111l
Tv'SO:'Sa'Sla"'aST—laST:g

c(s,s’)

infinite weight

1'—1

Z c(St, Sta1)

t=0

c(s,s’) = o0

Sub-Goal Tree Dynamic Programming

o V. (s,s’): length of shortest path s — s in Dk steps or less

* Obeys dynamic programming eguations:
Vo(s, s”) = c(s, s’) Vs,s'
Vi(s,s) =0 Vs
Vi.(s,s") = min{ I/k—1<S9 Sm) + Vi_1(s,, S’)} Vs,s':s # s

Sm

Sub-Goal Tree Dynamic Programming

o V. (s,s’): length of shortest path s — s in Dk steps or less

* Obeys dynamic programming eguations:
Vo(s, s”) = c(s, s’) Vs,s'
V.(s,s) =0 Vs
Vi.(s,s") = min{ Vk_l(s, Sm) + Vi_1(s,, S’)} Vs,s':s # s

Sm

Sub-Goal Tree Dynamic Programming

o V. (s,s’): length of shortest path s — s in Dk steps or less
 Obeys dynamic programming equations:
Vo(s, s”) = c(s, s’) Vs,s'
V.(s,s) =0 Vs
Vi.(s,s") = min{ Vk_l(s, Sm) + Vi_1(s,, S’)} Vs,s':s # s

Sm

Sub-Goal Tree Dynamic Programming

o V. (s,s’): length of shortest path s — s in Dk steps or less

* Obeys dynamic programming eguations:
Vo(s, s”) = c(s, s’) Vs,s'
Vi(s,s) =0 Vs
Vi.(s,s") = min{ Vk_l(s, Sm) +Vi_i(s,, S’)} Vs,s':s # s

Sm

Sub-Goal Tree Dynamic Programming

o V. (s,s’): length of shortest path s — s in Dk steps or less

* Obeys dynamic programming eguations:
Vo(s, s”) = c(s, s’) Vs,s'
Vi(s,s) =0 Vs
Vi.(s,s") = min{ I/k—1<S9 Sm) + Vi_1(s,, S’)} Vs,s':s # s

Sm

» Dependence on k is important —> similar to finite horizon DP!

Sub-Goal Tree Dynamic Programming

o V. (s,s’): length of shortest path s — s in Dk steps or less
 Obeys dynamic programming equations:
Vo(s, s”) = c(s, s’) Vs,s'
Vi(s,s) =0 Vs
Vi.(s,s") = min{ Vk_l(s, Sm) + Vi_1(s,, S’)} Vs,s':s # s

Sm

Theorem: For k > log, N, we have:
V,.(s, s”) is the length of shortest path from s to s’, for all s, s".

O(N3logN)

Sub-goal Trees - What'’s next?

1. DP principle for APSP RL

2. SGT is provably more efficient

3. New RL algorithms based on SGT
1. Value based - Fitted SGT-DP
2. High dim. Problems with SGT-PG

SGT Approximate Dynamic Programming

 Key in RL - function approximation (large state space)

« How does SGT handle approximations?

SGT Approximate Dynamic Programming

 Key in RL - function approximation (large state space)

« How does SGT handle approximations?

« Define the SGT operator 1:
(TV)(s,s") = min{ V(S, Sm) + V(s,, S’)}

m

* Approximate SGT iterations:

N\ N\
Vieir = 1Vi|| <€

o0

SGT Approximate Dynamic Programming

 Key in RL - function approximation (large state space)

How does SGT handle approximations®?

Define the SGT operator 1:

(TV)(s,s) = min{ V(S, Sm)

Approximate SGT iterations:

Error propagation?

m

N\ N\
Vier — 1V

o0

< €

SGT Approximate Dynamic Programming

* Error propagation;

 Value error O(Ne¢) for Bellman and SGT

SGT Approximate Dynamic Programming

* Error propagation:
 Value error O(Ne¢) for Bellman and SGT

 But what about the resulting trajectory??

* Greedy w.r.t. value function

SGT Approximate Dynamic Programming

* Error propagation:
 Value error O(Ne¢) for Bellman and SGT

 But what about the resulting trajectory??

* Greedy w.r.t. value function

. Bellman RL error accumulation: O(N?¢)

SGT Approximate Dynamic Programming

* Error propagation;

 Value error O(Ne¢) for Bellman and SGT

Grows linearly with

* But what about the resulting trajectory? distance from goal!

* Greedy w.r.t. value function

. Bellman RL error accumulation: O(N?¢)

S €
(N — 1e

SGT Approximate Dynamic Programming

* Error propagation:
 Value error O(Ne¢) for Bellman and SGT

 But what about the resulting trajectory??

* Greedy w.r.t. value function
. Bellman RL error accumulation: O(N?¢)

» SGT error accumulation: O(N log, Ne)!

SGT Approximate Dynamic Programming

* Error propagation;

 Value error O(Ne¢) for Bellman and SGT

Error decreases

 But what about the resulting trajectory? exponentially!

* Greedy w.r.t. value function
. Bellman RL error accumulation: O(N?¢)

. 2 2 \)
» SGT error accumulation: O(N log, Ne)! oy
\) 0.25Ne

0.5Ne 0.5Ne
Ne

SGT Approximate Dynamic Programming

* Error propagation:
 Value error O(Ne¢) for Bellman and SGT

e But what about the resultii

 Greedy w.r.t. value fu Less drift with SGT

trajectories!
e Bellman RL error acc

» SGT error accumulation: O(N log, Ne)!

Sub-goal Trees - What'’s next?

1. DP principle for APSP RL

2. SGT Is provably more efficient

3. New RL algorithms based on SGT
1. Value based - Fitted SGT-DP
2. High dim. Problems with SGT-PG

Recap

e So far - SGT = a new approximate DP framework

Recap

e So far - SGT = a new approximate DP framework

* Develop new RL algorithms!

Fitted SGT-DP - value-based algorithm

Off-policy batch RL data: (s, s’, ¢) tuples
At iteration k:

1. Sample states, goals from data {S, g}

N\ N\
2. (Generate regression targets: Vm,,get — min{ Vi1 (S, Sm) + Vi_1(s,,, g)}
S

m

/\
3. Fit new value function: Vj, = Fit(V,)

Fitted SGT-DP - value-based algorithm

Off-policy batch RL data: (s, s’, ¢) tuples
At iteration k:

1. Sample states, goals from data {S, g}

N\ N\
2. (Generate regression targets: Vm,,get — min{ Vi1 (S, Sm) + Vi_1(s,,, g)}
S

m

/\
3. Fit new value function: Vj, = Fit(V,)

Fitted SGT-DP - value-based algorithm

Off-policy batch RL data: (s, s’, ¢) tuples
At iteration k:

1. Sample states, goals from data {S, g}

2. Generate regression targets: V..., = mm{Vk (s, s) + Vk 1(s,, g)}

3. Fit new value function: Vk — Flt(Vm,,get) L
Grld search over s,

Fitted SGT-DP - value-based algorithm

What about actions?

At iteration k:

e Learn inverse model (s,s’) — a
1. Sample states, « ()

Easy if data = (s, a, s/, ¢)

N\
2. (Generate regres m) + Vk—l(Sma g)}

Use standard goal-based
RL for low level actions

3. Fit new value fu

Fitted SGT-DP: 2D Point Robot Results

1.0

0.8 A

0.6 -

0.4

0.2

0.0

‘.
XS
XS

0
XS
XK

000
KK
KX

N
-
XS
SRS

V) . N\
3
OX X
0’0:0

::::
04
‘:‘:
::::
=

Goal

—e— Sub-goals

)

—e— Tracked Trajectory (Inverse Model)

O
o

O
N

0.4

0.6

0.8

1.0

High cost inside
obstacles!

Fitted SGT-DP: 2D Point Robot Results

1.0

0.8 A

0.6 -

0.4

0.2

0.0

N\ —

N

U
Q)
—

IS

OXXAKAK AKX KK
00507007020 20 % %
0507050 0 %0 %0 %

205
RS

%

‘:::
::::
09,

—e— Sub-goals

Goal

)

—e— Tracked Trajectory (Inverse Model)

O
o

O
N

0.4

0.6

0.8

1.0

(ours)

Model Distance to
goal
_Flttec_l Q 058
iteration
Fitted SGT-DP 013

Fitted SGT-DP - high dim states”?

Off-policy batch RL data: (s, s’, ¢) tuples

At iteration k: How to handle

high-dim states?

1. Sample states, goals from da

N\
2. Generate regression targets: V..., = Vk_l(s, Sm)
Sm

N\
3. Fit new value function: V), = Fit(V,

arget)

SGT Policy Gradient (SGT-PQG)

» Stochastic policy for next sub-goal 7,(s,, | s, s’) with parameters 0

k=3
k=2 k=2
mm 1

D e ® e ® ® @
}:Tr[ﬂs,g] = Pr[so, ..., sr|s, g]

—

SGT Policy Gradient (SGT-PQG)

» Stochastic policy for next sub-goal 7,(s,, | s, s’) with parameters 0

k=3

k=2 k=2

Val Nl O\ -1 =1
® ® ® ® ® ® & @

}:Tr[ﬂs,g] = Pr{so,...,srl|s, 9]

—

» Find 6 that minimizes the trajectory cost:

J(@) — JT"O w— 4:’7'N,0(7T0) [CT]

SGT Policy Gradient (SGT-PQG)

* Policy gradient theorem for SGT:

VoJ(0) = E,x,) |¢r - Volog Pr 7]

p(me) |

B p oD—d

o id iyd| i,d id
= E,(rp) E E C % Vg log mo (sm s, Qg

d=1 21=1

SGT Policy Gradient (SGT-PQG)

* Policy gradient theorem for SGT:

VoJ(0) = Eyr,) |¢r - Volog Pr [7]

p(me)

P o _
o iyd ivd| i, d id
= E,(rp) E E C2%- Vg log me (sm s, Qg)

d=1 21=1

Sum of costs in segment

SGT Policy Gradient (SGT-PQG)

* Policy gradient theorem for SGT:

VoJ(0) = E,x,) |¢r - Volog Pr 7]

p(me) |

4“
— Lp(me)

d| id id
S,)

Can also add standard
tricks: baseline,
trust region, etc.

SGT-PG - Experiments

* Continuous motion planning

e 7/ DoF robot arm

 Obstacles, self-collisions
 Reach from any state to any goal
NN predicts sub-goals

* Linear motion between sub-goals

SGT-PG - Trajectory Example

r

Start

g

Sub-goal

e

Goal

SGT-PG - Trajectory Example

Foa
!, r

Start

Sub-goal

Sub-goal Sub-goal

Start

Sub-goal

Sub-goal

Sub-goal

SGT-PG - Trajectory Example

self-
collision
1.10.

1.+0.
Start 0.006.40, Goal

1.10.
0.983+0.
0.88+0.

SGT-PG - Coverage of State Space!

SE% Sl S

Jarl RN =%

)

Conclusion

 SGT - New multi-goal RL framework
* First principle — all-pairs shortest path
* Provably more efficient in multi-goal setting

» Basis for many new algorithms

Conclusion

 SGT - New multi-goal RL framework
* First principle — all-pairs shortest path
* Provably more efficient in multi-goal setting
» Basis for many new algorithms
* Future work
o Stochastic systems (e.g., update plan MPC fashion)
* EXxploration

* High-dim observations (images)

Conclusion

+ SGT - Neysanbiaaal Ol fuamau

 First p
. Prova Come find us in the virtual poster
. Basis 1 session!
e Future
or reach out:
o Stoche - - -
tomj@campus.technion.ac.ll
 EXxplor

+ High-diM~omoorrormre re

