Sub-Goal Trees – a Framework for Goal-Based Reinforcement Learning

Tom Jurgenson, Or Avner, Edward Groshev, Aviv Tamar

Motivation: multi-goal reinforcement learning

Multi-goal task: agent needs to reach different goals

Motivation: multi-goal reinforcement learning

- Multi-goal task: agent needs to reach different goals
- Frequently encountered in robotics / game-playing etc.:

RL is single-goal (cost function)

RL is single-goal (cost function)

How to extend to multiple goals?

RL is single-goal (cost function)

So far: UVFA^[1], HER^[2], many others

- Add goal -> state observation
- Train using standard RL

^[1] Schaul et al, Universal Value Function Approximators, 2015 [2] Andrychowicz et al. Hindsight Experience Replay, 2017

^[1] Schaul et al, Universal Value Function Approximators, 2015

^[2] Andrychowicz et al. Hindsight Experience Replay, 2017

^[1] Schaul et al, Universal Value Function Approximators, 2015

^[2] Andrychowicz et al. Hindsight Experience Replay, 2017

Consider: All-Pairs-Shortest-Path (APSP) problem

• Bellman RL approach = Bellman-Ford on all starts

Consider: All-Pairs-Shortest-Path (APSP) problem

• Bellman RL approach = Bellman-Ford on all starts

$$\rightarrow O\left(|V|^4\right)$$

Consider: All-Pairs-Shortest-Path (APSP) problem

• Bellman RL approach = Bellman-Ford on all starts

$$\rightarrow O\left(|V|^4\right)$$

• Floyd-Warshal is faster!

$$\rightarrow O\left(|V|^3\right)$$

Consider: All-Pairs-Sh

Bellman RL approa

Structure to the problem we can exploit!

Floyd-Warshal is faster:

$$\rightarrow O\left(|V|^4\right)$$

$$\rightarrow O\left(|V|^3\right)$$

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

"Bellman" RL:

What is the **next** min cost state?

 s_0, g

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

"Bellman" RL:

What is the **next** min cost state?

$$s_0, g$$

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

"Bellman" RL:

What is the **next** min cost state?

$$s_0, g \longrightarrow s_1, g \longrightarrow s_2$$

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

"Bellman" RL:

What is the **next** min cost state?

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

"SGT" RL:

What is the **middle** min cost state?

(middle state = **subgoal**)

 S_0, g

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

"SGT" RL:

What is the **middle** min cost state?

(middle state = **subgoal**)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

"SGT" RL:

What is the **middle** min cost state?

(middle state = **subgoal**)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

"SGT" RL:

What is the **middle** min cost state?

(middle state = **subgoal**)

New APSP formulation for multi-goal RL w/o the Bellman-Eq.!

"Bellman" RL:

What is the **next** min cost state?

$$S_0, g$$
 S_1, g
 S_2, g
 S_7

"SGT" RL:

What is the **middle** min cost state? (middle state = **subgoal**)

Sub-goal Trees - What's next?

- 1. DP principle for APSP RL
- 2. SGT is provably more efficient
- 3. New RL algorithms based on SGT
 - 1. Value based Fitted SGT-DP
 - 2. High dim. Problems with SGT-PG

Bellman's principle of optimality

Value function

$$V_t^*(s) = \min_{\pi} \mathbb{E}^{\pi} \left(\sum_{t'=t}^{T} c(s_{t'}) \middle| s_t = s \right)$$

Bellman's principle of optimality

Value function

$$V_t^*(s) = \min_{\pi} \mathbb{E}^{\pi} \left(\sum_{t'=t}^{T} c(s_{t'}) \middle| s_t = s \right)$$

Bellman's equation

$$V_t^*(s) = \min_{a} \left\{ c(s) + \mathbb{E} \left(V_{t+1}^*(s') \middle| s, a \right) \right\}$$
 Immediate Proceed cost optimally

Bellman's principle of optimality

Value function

$$V_t^*(s) = \min_{\pi} \mathbb{E}^{\pi} \left(\sum_{t'=t}^{T} c(s_{t'}) \middle| s_t = s \right)$$

Bellman's equation

$$V_t^*(s) = \min_{a} \left\{ c(s) + \mathbb{E} \left(V_{t+1}^*(s') \middle| s, a \right) \right\}$$
 Immediate Proceed cost optimally

Bellman's principle of optimality

All-pairs shortest-path (APSP)

- Directed, weighted graph
- Describes a deterministic MDP
- N nodes, weights $c(s, s') \ge 0$
- c(s,s)=0

All-pairs shortest-path (APSP)

- Directed, weighted graph
- Describes a deterministic MDP
- N nodes, weights $c(s, s') \ge 0$
- c(s,s)=0
- Unconnected edge

 infinite weight

All-pairs shortest-path (APSP)

- Directed, weighted graph
- Describes a deterministic MDP
- N nodes, weights $c(s, s') \ge 0$
- c(s,s)=0
- Unconnected edge

 infinite weight
- Objective:

- $V_k(s,s')$: length of shortest path $s \to s'$ in 2^k steps or less
- Obeys dynamic programming equations:

$$V_{0}(s, s') = c(s, s') \qquad \forall s, s'$$

$$V_{k}(s, s) = 0 \qquad \forall s$$

$$V_{k}(s, s') = \min_{s_{m}} \left\{ V_{k-1}(s, s_{m}) + V_{k-1}(s_{m}, s') \right\} \qquad \forall s, s' : s \neq s'$$

- $V_k(s,s')$: length of shortest path $s \to s'$ in 2^k steps or less
- Obeys dynamic programming equations:

$$V_0(s, s') = c(s, s') \qquad \forall s, s'$$

$$V_k(s, s) = 0 \qquad \forall s$$

$$V_k(s, s') = \min_{s_m} \left\{ V_{k-1}(s, s_m) + V_{k-1}(s_m, s') \right\} \qquad \forall s, s' : s \neq s'$$

- $V_k(s,s')$: length of shortest path $s \to s'$ in 2^k steps or less
- Obeys dynamic programming equations:

$$V_0(s, s') = c(s, s') \qquad \forall s, s'$$

$$V_k(s, s) = 0 \qquad \forall s$$

$$V_k(s, s') = \min_{s_m} \left\{ V_{k-1}(s, s_m) + V_{k-1}(s_m, s') \right\} \qquad \forall s, s' : s \neq s'$$

- $V_k(s,s')$: length of shortest path $s \to s'$ in 2^k steps or less
- Obeys dynamic programming equations:

$$V_{0}(s, s') = c(s, s') \qquad \forall s, s'$$

$$V_{k}(s, s) = 0 \qquad \forall s$$

$$V_{k}(s, s') = \min_{s_{m}} \left\{ V_{k-1}(s, s_{m}) + V_{k-1}(s_{m}, s') \right\} \qquad \forall s, s' : s \neq s'$$

$$S_{m}$$

- $V_k(s,s')$: length of shortest path $s \to s'$ in 2^k steps or less
- Obeys dynamic programming equations:

$$V_{0}(s, s') = c(s, s') \qquad \forall s, s'$$

$$V_{k}(s, s) = 0 \qquad \forall s$$

$$V_{k}(s, s') = \min_{s_{m}} \left\{ V_{k-1}(s, s_{m}) + V_{k-1}(s_{m}, s') \right\} \qquad \forall s, s' : s \neq s'$$

• Dependence on k is important -> similar to finite horizon DP!

- $V_k(s,s')$: length of shortest path $s \to s'$ in 2^k steps or less
- Obeys dynamic programming equations:

$$V_0(s, s') = c(s, s') \qquad \forall s, s'$$

$$V_k(s, s) = 0 \qquad \forall s$$

$$V_k(s, s') = \min_{s} \left\{ V_{k-1}(s, s_m) + V_{k-1}(s_m, s') \right\} \qquad \forall s, s' : s \neq s'$$

Theorem: For $k \ge \log_2 N$, we have:

 $V_k(s,s')$ is the length of shortest path from s to s', for all s,s'.

Sub-goal Trees - What's next?

- 1. DP principle for APSP RL
- 2. SGT is provably more efficient
- 3. New RL algorithms based on SGT
 - 1. Value based Fitted SGT-DP
 - 2. High dim. Problems with SGT-PG

- Key in RL function approximation (large state space)
- How does SGT handle approximations?

- Key in RL function approximation (large state space)
- How does SGT handle approximations?
- Define the SGT operator T:

$$(TV)(s, s') = \min_{s_m} \left\{ V(s, s_m) + V(s_m, s') \right\}$$

Approximate SGT iterations:

$$\left\| \hat{V}_{k+1} - T\hat{V}_k \right\|_{\infty} \le \epsilon$$

- Key in RL function approximation (large state space)
- How does SGT handle approximations?
- Define the SGT operator T:

$$(TV)(s, s') = \min_{s_m} \left\{ V(s, s_m) + V(s_m, s') \right\}$$

Approximate SGT iterations:

$$\left\| \hat{V}_{k+1} - T\hat{V}_k \right\|_{\infty} \le \epsilon$$

Error propagation?

- Error propagation:
 - Value error $O(N\epsilon)$ for Bellman and SGT

- Error propagation:
 - Value error $O(N\epsilon)$ for Bellman and SGT
- But what about the resulting trajectory?
 - Greedy w.r.t. value function

- Error propagation:
 - Value error $O(N\epsilon)$ for Bellman and SGT
- But what about the resulting trajectory?
 - Greedy w.r.t. value function
 - Bellman RL error accumulation: $O(N^2\epsilon)$

- Error propagation:
 - Value error $O(N\epsilon)$ for Bellman and SGT
- But what about the resulting trajectory?
 - Greedy w.r.t. value function
 - Bellman RL error accumulation: $O(N^2\epsilon)$

Grows linearly with distance from goal!

- Error propagation:
 - Value error $O(N\epsilon)$ for Bellman and SGT
- But what about the resulting trajectory?
 - Greedy w.r.t. value function
 - Bellman RL error accumulation: $O(N^2\epsilon)$
 - SGT error accumulation: $O(N \log_2 N\epsilon)!$

- Error propagation:
 - Value error $O(N\epsilon)$ for Bellman and SGT
- But what about the resulting trajectory?
 - Greedy w.r.t. value function
 - Bellman RL error accumulation: $O(N^2\epsilon)$
 - SGT error accumulation: $O(N \log_2 N\epsilon)!$

Error decreases exponentially!

- Error propagation:
 - Value error $O(N\epsilon)$ for Bellman and SGT
- But what about the resulting

 - Bellman RL error accu

 Greedy w.r.t. value fur Less drift with SGT trajectories!

• SGT error accumulation: $O(N \log_2 N\epsilon)!$

Sub-goal Trees - What's next?

- 1. DP principle for APSP RL
- 2. SGT is provably more efficient
- 3. New RL algorithms based on SGT
 - 1. Value based Fitted SGT-DP
 - 2. High dim. Problems with SGT-PG

Recap

• So far - SGT = a new approximate DP framework

$$V_{k}(s, s') = \min_{s_{m}} \left\{ V_{k-1}(s, s_{m}) + V_{k-1}(s_{m}, s') \right\}$$

Recap

- So far SGT = a new approximate DP framework
- Develop new RL algorithms!

Off-policy batch RL data: (s, s', c) tuples

At iteration k:

- 1. Sample states, goals from data $\{s, g\}$
- 2. Generate regression targets: $V_{target} = \min_{s_m} \left\{ \hat{V}_{k-1}(s, s_m) + \hat{V}_{k-1}(s_m, g) \right\}$
- 3. Fit new value function: $\hat{V}_k = Fit(V_{target})$

Off-policy batch RL data: (s, s', c) tuples

At iteration k:

- 1. Sample states, goals from data $\{s, g\}$
- 2. Generate regression targets: $V_{target} = \min_{s_m} \left\{ \hat{V}_{k-1}(s, s_m) + \hat{V}_{k-1}(s_m, g) \right\}$
- 3. Fit new value function: $\hat{V}_k = Fit(V_{target})$

Off-policy batch RL data: (s, s', c) tuples

At iteration k:

- 1. Sample states, goals from data $\{s, g\}$
- 2. Generate regression targets: $V_{target} = \min_{s_m} \left\{ \hat{V}_{k-1}(s, s_m) + \hat{V}_{k-1}(s_m, g) \right\}$
- 3. Fit new value function: $\hat{V}_k = Fit(V_{target})$

Grid search over S_m

Off-policy batch RL date (a a' a) turble

At iteration k:

1. Sample states,

2. Generate regres

3. Fit new value fur

What about actions?

• Learn inverse model $(s, s') \rightarrow a$

Easy if data = (s, a, s', c)

Use standard goal-based RL for low level actions

$$_{m})+\hat{V}_{k-1}(s_{m},g)$$

iurge

Fitted SGT-DP: 2D Point Robot Results

Fitted SGT-DP: 2D Point Robot Results

Model	Distance to goal
Fitted Q iteration	0.58
Fitted SGT-DP (ours)	0.13

Fitted SGT-DP - high dim states?

Off-policy batch RL data: (s, s', c) tuples

At iteration k:

1. Sample states, goals from da

How to handle high-dim states?

- 2. Generate regression targets: $V_{target} = \min_{s_m} \left\{ \hat{V}_{k-1}(s, s_m) + \hat{V}_{k-1}(s_m, g) \right\}$
- 3. Fit new value function: $\hat{V}_k = Fit(V_{target})$

• Stochastic policy for next sub-goal $\pi_{\theta}(s_m \mid s, s')$ with parameters θ

• Stochastic policy for next sub-goal $\pi_{\theta}(s_m \mid s, s')$ with parameters θ

• Find θ that minimizes the trajectory cost:

$$J(\theta) = J^{\pi_{\theta}} = \mathbb{E}_{\tau \sim \rho(\pi_{\theta})} \left[c_{\tau} \right]$$

Policy gradient theorem for SGT:

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\rho(\pi_{\theta})} \left[c_{\tau} \cdot \nabla_{\theta} \log \Pr_{\rho(\pi_{\theta})} [\tau] \right]$$

$$= \mathbb{E}_{\rho(\pi_{\theta})} \left[\sum_{d=1}^{D} \sum_{i=1}^{2^{D-d}} C_{\tau}^{i,d} \cdot \nabla_{\theta} \log \pi_{\theta} \left(s_{m}^{i,d} \middle| s^{i,d}, g^{i,d} \right) \right]$$

Policy gradient theorem for SGT:

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\rho(\pi_{\theta})} \left[c_{\tau} \cdot \nabla_{\theta} \log \Pr_{\rho(\pi_{\theta})} [\tau] \right] \\ &= \mathbb{E}_{\rho(\pi_{\theta})} \left[\sum_{d=1}^{D} \sum_{i=1}^{2^{D-d}} C_{\tau}^{i,d} \cdot \nabla_{\theta} \log \pi_{\theta} \left(s_{m}^{i,d} \middle| s^{i,d}, g^{i,d} \right) \right] \\ &\qquad \qquad \text{Sum of costs in segment} \\ &\qquad \qquad \text{(\mathbf{s}_{0})} \qquad \qquad \text{$(\mathbf{s}_$$

Policy gradient theorem for SGT:

Can also add standard tricks: baseline, trust region, etc.

SGT-PG - Experiments

- Continuous motion planning
- 7 DoF robot arm
- Obstacles, self-collisions
- Reach from any state to any goal
- NN predicts sub-goals
- Linear motion between sub-goals

SGT-PG - Trajectory Example

SGT-PG - Trajectory Example

SGT-PG - Trajectory Example

SGT-PG - Coverage of State Space!

Conclusion

- SGT New multi-goal RL framework
 - First principle all-pairs shortest path
 - Provably more efficient in multi-goal setting
 - Basis for many new algorithms

Conclusion

- SGT New multi-goal RL framework
 - First principle all-pairs shortest path
 - Provably more efficient in multi-goal setting
 - Basis for many new algorithms
- Future work
 - Stochastic systems (e.g., update plan MPC fashion)
 - Exploration
 - High-dim observations (images)

Conclusion

First pr

Proval

Basis

Future w

Stocha

Come find us in the virtual poster session!

or reach out:

tomj@campus.technion.ac.il

Explor
 High-dim baser various (images)