ICML | 2020

Can Increasing Input Dimensionality Improve Deep Reinforcement Learning?

Kei Ota¹, Tomoaki Oiki¹, Devesh K. Jha², Toshisada Mariyama¹, and Daniel Nikovski²

1. Mitsubishi Electrics, Kanagawa, JP

2. Mitsubishi Electric Research Labs, MA, US.

Introduction

- Deep RL algorithms have achieved impressive success
 - ✓ Can solve complex tasks
 - X Learning representations requires a large amount of data

Introduction

- Deep RL algorithms have achieved impressive success
 - ✓ Can solve complex tasks
 - X Learning representations requires a large amount of data
- State Representation Learning (SRL)
 - Learned features are in low dimension, evolve through time, and are influenced by actions of an agent
 - The lower the dimensionality, the faster and better RL algorithms will learn

Introduction

- Deep RL algorithms have achieved impressive success
 - Can solve complex tasks
 - X Learning representations requires a large amount of data
- State Representation Learning (SRL)
 - Learned features are in low dimension, evolve through time, and are influenced by actions of an agent
 - The lower the dimensionality, the faster and better RL algorithms will learn

Can Increasing Input Dimensionality Improve Deep RL?

OFENet: Online Feature Extractor Network

• OFENet

– Train feature extractor network ϕ_o and $\phi_{o,a}$ that produces **high-dimensional** representation z_{o_t} and z_{o_t,a_t}

OFENet: Online Feature Extractor Network

OFENet

– Train feature extractor network ϕ_o and $\phi_{o,a}$ that produces **high-dimensional** representation z_{o_t} and z_{o_t,a_t}

– Optimize $\theta_{\rm aux}=\{\theta_{\phi_o},\theta_{\phi_{o,a}},\theta_{\rm pred}\}$ by learning to predict next state

$$L_{\text{aux}} = \mathbb{E}_{(o_t, a_t) \sim p, \pi} \left[\| f_{\text{pred}}(z_{o_t, a_t}) - o_{t+1} \|^2 \right]$$

- Increasing the search space allows the agent to learn much more complex policies

Network Architecture

- What is best architecture to extract features?
 - Deeper networks: optimization ability and expressiveness
 - Shallow layers: physically meaningful output
- MLP DenseNet
 - Combine advantages of deep layers and shallow layers

- Use **Batch Normalization** to suppress changes in input distributions

Experiments

- **1. What is a good architecture** that learns effective state and state-action representations for training better RL agents?
- 2. Can OFENet learn more sample efficient and better performant polices when compared to some of the state-of-the-art techniques?
- 3. What leads to the performance gain obtained by OFENet?

What is a good architecture?

- Compare aux. score and actual RL score to search a good architecture from:
 - Connectivity architecture: {MLP, MLP ResNet, MLP DenseNet}

- Number of layers: $n_{\text{layers}} \in \{1,2,3,4\}$ for MLP, $n_{\text{layers}} \in \{2,4,6,8\}$ for others
- Activation function: {ReLU, tanh, Leaky ReLU, swish, SELU}
- Aux. score: randomly collect 100K transitions for training, 20K for evaluation

$$L_{aux} = \mathbb{E}_{(o_t, a_t) \sim p, \pi} \left[\| f_{pred}(z_{o_t, a_t}) - o_{t+1} \|^2 \right]$$

Actual score: measure returns of SAC agent with 500K steps training

What is a good architecture?

- MLP-DenseNet consistently achieves higher actual score
- Smaller the aux. score, better the actual score
- We can select architecture with the smallest aux. score without solving heavy RL problem!

More sample efficient and better performant polices?

- Measure performance of SAC, TD3, and PPO with and without OFENet
 - No changes in hyperparameters for each algorithm

- Compare to closest work: ML-DDPG [Munk2016]
 - Reduce the dimension of the observation to one third of its original

More sample efficient and better performant polices?

- OFENet improves sample efficiency and returns without changing any hyperparameters
- OFENet effectively learns meaningful features

	SAC				TD3		PPO	
	OFE (OURS)	Original	ML-SAC (1/3)	ML-SAC (OFE like)	OFE (OURS)	Original	OFE (OURS)	Original
HOPPER-V2	3511.6	3316.6	750.5	868.7	3488.3	3613.0	2525.6	1753.5
Walker2d-v2	5237.0	3401.5	667.4	627.4	4915.1	4515.6	3072.1	3016.7
HALFCHEETAH-V2	16964.1	14116.1	1956.9	11345.5	16259.5	13319.9	3981.8	2860.4
ANT-V2	8086.2	5953.1	4950.9	2368.3	8472.4	6148.6	1782.3	1678.9
Humanoid-v2	9560.5	6092.6	3458.2	331.7	120.6	345.2	670.3	652.4

What leads to the performance gain?

 Just increasing network size doesn't improve performance

What leads to the performance gain?

- Just increasing network size doesn't improve performance
- BN stabilizes training

What leads to the performance gain?

- Just increasing network size doesn't improve performance
- BN stabilizes training
- Decoupling feature extraction and control policy is important
- Online SRL handles unknown distribution during training

Conclusion

- Proposed Online Feature Extractor Network (OFENet)
 - -Provides much higher-dimensional representation
 - Demonstrated OFENet can significantly accelerate RL
- OFENet can be used as New RL tool box
 - -Just put OFENet as base layer of RL algorithms
 - No need to tune hyperparameters of original algorithms!
 - -Code link: <u>www.merl.com/research/license/OFENet</u>

Can increasing input dimensionality improve deep RL? Yes, it can!