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Improve Deep Reinforcement Learning?



• Deep RL algorithms have achieved impressive success
ü Can solve complex tasks
X Learning representations requires a large amount of data

Introduction
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ü Can solve complex tasks
X Learning representations requires a large amount of data

• State Representation Learning (SRL)
– Learned features are in low dimension, evolve through time, and are influenced by 

actions of an agent
– The lower the dimensionality, the faster and better RL algorithms will learn

Introduction

Policy
!"# $#Feature

Extractor
%&'

Policy
! $#"#

Standard RLSRL + RL



• Deep RL algorithms have achieved impressive success
ü Can solve complex tasks
X Learning representations requires a large amount of data

• State Representation Learning (SRL)
– Learned features are in low dimension, evolve through time, and are influenced by 

actions of an agent
– The lower the dimensionality, the faster and better RL algorithms will learn

Introduction

Policy
!"# $#Feature

Extractor

%&'

Policy
! $#"#

Standard RLSRL + RL

Can Increasing Input Dimensionality Improve Deep RL?



!"#,%#&",%
State-Action 

Feature Extractor

• OFENet
– Train feature extractor network &" and &",% that produces high-dimensional

representation !"# and !"#,%#

OFENet: Online Feature Extractor Network
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• OFENet
– Train feature extractor network &" and &",% that produces high-dimensional

representation !"# and !"#,%#

– Optimize '()* = ',-, ',-,. , '/012 by learning to predict next state

OFENet: Online Feature Extractor Network
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– Increasing the search space allows the agent to learn much more complex policies
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• What is best architecture to extract features?
– Deeper networks: optimization ability and expressiveness
– Shallow layers: physically meaningful output

Network Architecture
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– Use Batch Normalization to suppress changes in input distributions

*)
() FC

concat

concat

• MLP DenseNet
– Combine advantages of deep layers and shallow layers
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1. What is a good architecture that learns effective state and 
state-action representations for training better RL agents?

2. Can OFENet learn more sample efficient and better 
performant polices when compared to some of the state-of-the-
art techniques?

3. What leads to the performance gain obtained by OFENet?

Experiments



• Compare aux. score and actual RL score to search a good architecture from:
What is a good architecture?
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• Aux. score: randomly collect 100K transitions for training, 20K for evaluation

• Actual score: measure returns of SAC agent with 500K steps training

– Number of layers: 89:;<=> ∈ {1,2,3,4} for MLP, 89:;<=> ∈ {2,4,6,8} for others
– Activation function: {ReLU, tanh, Leaky ReLU, swish, SELU}

– Connectivity architecture: {MLP,MLP ResNet, MLP DenseNet}
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What is a good architecture?

• We can select architecture 
with the smallest aux. score 
without solving heavy RL 
problem!
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• MLP-DenseNet consistently 
achieves higher actual score
• Smaller the aux. score,

better the actual score



More sample efficient and better performant polices?
• Measure performance of SAC, TD3, and PPO with and without OFENet

– No changes in hyperparameters for each algorithm
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• Compare to closest work: ML-DDPG [Munk2016]
– Reduce the dimension of the observation to one third of its original



More sample efficient and better performant polices?

• OFENet improves sample 
efficiency and returns 
without changing any 
hyperparameters
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• OFENet effectively learns 
meaningful features



What leads to the performance gain?

• Just increasing network size 
doesnʼt improve performance
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What leads to the performance gain?

• Just increasing network size 
doesnʼt improve performance
• BN stabilizes training

• Decoupling feature extraction 
and control policy is important

• Online SRL handles unknown 
distribution during training



• Proposed Online Feature Extractor Network (OFENet)
–Provides much higher-dimensional representation
–Demonstrated OFENet can significantly accelerate RL

• OFENet can be used as New RL tool box

– Just put OFENet as base layer of RL algorithms

–No need to tune hyperparameters of original algorithms!

–Code link: www.merl.com/research/license/OFENet

Conclusion

Can increasing input dimensionality improve deep RL?
Yes, it can! 

http://www.merl.com/research/license/OFENet

