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I No coreset for minx∈Rd ‖Ax− b‖rp + λ‖x‖sq, where r 6= s
smaller in size than that for minx∈Rd ‖Ax− b‖rp

I Implies no coreset for Lasso smaller in size than that of least
squares regression

I Introducing modified lasso and building smaller coreset for it.
I Coresets for `p-regression with `p regularization. Extension to

multiple response regression
I Empirical Evaluations
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Coresets

Definition

For ε > 0, a dataset A, a non-negative function f and a query
space Q, C is an ε-coreset of A if ∀q ∈ Q∣∣∣∣fq(A)− fq(C)

∣∣∣∣ ≤ εfq(A)

We construct coresets which are subsamples (rescaled) from the
original data



Sensitivity [LS10]

Definition

The sensitivity of the i th point of some dataset X for a func-
tion f and query space Q is defined as
si = supq∈Q

fq(xi)∑
x′∈X fq(x′) .

I Determines highest fractional contribution of point to the cost
function

I Can be used to create coresets. Coreset size is function of sum
of sensitivities and dimension of query space

I Upper bounds to sensitivities are enough [FL11, BFL16]
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Coresets for Regularized Regression

I Regularization is important to prevent overfitting, numerical
stability, induce sparsity etc.

We are interested in the following problem : For λ > 0

min
x∈Rd
‖Ax− b‖rp + λ‖x‖sq

for p, q ≥ 1 and r , s > 0.
A coreset for this problem is (Ã, b̃) such that ∀x ∈ Rd and ∀λ > 0,

‖~Ax−~b‖rp + λ‖x‖sq ∈ (1± ε)(‖Ax− b‖rp + λ‖x‖sq)
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Main Question

I Coresets for unregularized regression work for regularized
counterpart

I [ACW17] showed coreset for ridge regression using ridge
leverage scores. Coreset smaller than coresets for least squares
regression

I Intuition : Regularization imposes a constraint on the solution
space.

I Can we expect all regularized problems to have a smaller size
coresets, than the unregularized version? For e.g. for Lasso
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Our Main Result

Theorem

Given a matrix A ∈ Rn×d and λ > 0, any coreset for the
problem ‖Ax‖rp + λ‖x‖sq, where r 6= s, p, q ≥ 1 and r , s > 0,
is also a coreset for ‖Ax‖rp.

Implication: Smaller coresets for regularized problem are not
obtained when r 6= s

The popular Lasso problem falls under this category and hence does
not have a coreset smaller than one for least square regression.

Proof by Contradiction
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min
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I Constrained version same as lasso

I Empirically shown to induce sparsity like lasso
I Allows smaller coreset than least squares regression
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Coreset for Modified Lasso

Theorem

Given a matrix A ∈ Rn×d , corresponding vector b ∈ Rn, any
coreset for the function ‖Ax− b‖pp + λ‖x‖pp is also a coreset
of the function ‖Ax− b‖pp + λ‖x‖pq where q ≤ p, p, q ≥ 1.

I Implication: Coresets for ridge regression also work for
modified lasso

I Coreset of size O( sdλ(A) log sdλ(A)
ε2

) with a high probability for
modified lasso

I sdλ(A) =
∑

j∈[d ]
1

1+ λ

σ2
j

≤ d
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Coresets for `p Regression with `p Regularization

The `p Regression with `p Regularization is given as

min
x∈Rd
‖Ax− b‖pp + λ‖x‖pp

Coresets for `p regression constructed using the well conditioned
basis

Well conditioned Basis [DDH+09]

A matrix U is called an (α, β, p) well-conditioned basis for A
if ‖U‖p ≤ α and ∀x ∈ Rd , ‖x‖q ≤ β‖Ux‖p where 1

p +
1
q = 1.



I Sampling using the pth power of the p norm of rows of the
(α, β, p) well-conditioned basis of [A,b], we can obtain a
coreset of size Õ(αβ)p with high probability for `p regression

I For `p Regression with `p Regularization we bound the

sensitivities by si ≤
βp‖ui‖pp

1+ λ

‖A′‖p
(p)

+ 1
n

I Sum of sensitivities is bound by S ≤ (αβ)p

1+ λ

‖A′‖p
(p)

+ 1



I Sampling using the pth power of the p norm of rows of the
(α, β, p) well-conditioned basis of [A,b], we can obtain a
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I The coreset size is O
(

(αβ)pd log 1
ε(

1+ λ

‖A′‖p
(p)

)
ε2

)
whp

I Coreset size is decreasing in λ

I Specifically for Regularized Least Deviation problem we get

coreset of size O

(
d5/2 log 1

ε(
1+ λ

‖A′‖(1)

)
ε2

)
I Results extend to Multiresponse Regularized Regression also



I The coreset size is O
(

(αβ)pd log 1
ε(

1+ λ

‖A′‖p
(p)

)
ε2

)
whp

I Coreset size is decreasing in λ

I Specifically for Regularized Least Deviation problem we get

coreset of size O

(
d5/2 log 1

ε(
1+ λ

‖A′‖(1)

)
ε2

)
I Results extend to Multiresponse Regularized Regression also



I The coreset size is O
(

(αβ)pd log 1
ε(

1+ λ

‖A′‖p
(p)

)
ε2

)
whp

I Coreset size is decreasing in λ

I Specifically for Regularized Least Deviation problem we get

coreset of size O

(
d5/2 log 1

ε(
1+ λ

‖A′‖(1)

)
ε2

)
I Results extend to Multiresponse Regularized Regression also



Empirical Results
Sparsity Induced by Modified Lasso
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Comparison with Uniform Sampling

Matrix size : 100000× 30
Matrix with non uniform leverage scores [YMM15]

Table 1: Relative error of different coreset sizes for Modified Lasso,
λ = 0.5

Sample Size Ridge Leverage Uniform Sampling
Scores Sampling

30 0.059 0.8289
50 0.044 0.8289
100 0.031 0.8286
150 0.028 0.8286
200 0.013 0.8287



Table 2: Relative error of different coreset sizes for RLAD, λ = 0.5

Sample Size Sensitivity Uniform Sampling
based Sampling

30 0.69 385.99
50 0.65 112.70
100 0.34 98.53
150 0.19 96.09
200 0.17 27.49



Conclusion and Future Work

I We present first work on coresets for regularized regression for
general p norm.

Open Questions
I Tighter bounds on sensitivity scores
I Coresets for other models with regularization and/or

constraints.



References I

Haim Avron, Kenneth L Clarkson, and David P Woodruff,
Sharper bounds for regularized data fitting, Approximation,
Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2017), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Vladimir Braverman, Dan Feldman, and Harry Lang, New
frameworks for offline and streaming coreset constructions,
arXiv preprint arXiv:1612.00889 (2016).

Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar,
and Michael W Mahoney, Sampling algorithms and coresets for
`p regression, SIAM Journal on Computing 38 (2009), no. 5,
2060–2078.



References II

Petros Drineas, Michael W Mahoney, and Shan
Muthukrishnan, Sampling algorithms for l 2 regression and
applications, Proceedings of the seventeenth annual
ACM-SIAM symposium on Discrete algorithm, Society for
Industrial and Applied Mathematics, 2006, pp. 1127–1136.

Dan Feldman and Michael Langberg, A unified framework for
approximating and clustering data, Proceedings of the
forty-third annual ACM symposium on Theory of computing,
ACM, 2011, pp. 569–578.

David Haussler, Sphere packing numbers for subsets of the
boolean n-cube with bounded vapnik-chervonenkis dimension,
Journal of Combinatorial Theory, Series A 69 (1995), no. 2,
217–232.



References III

Michael Langberg and Leonard J Schulman, Universal
ε-approximators for integrals, Proceedings of the twenty-first
annual ACM-SIAM symposium on Discrete Algorithms, SIAM,
2010, pp. 598–607.

Mert Pilanci and Martin J Wainwright, Randomized sketches of
convex programs with sharp guarantees, IEEE Transactions on
Information Theory 61 (2015), no. 9, 5096–5115.

Jiyan Yang, Xiangrui Meng, and Michael W Mahoney,
Implementing randomized matrix algorithms in parallel and
distributed environments, Proceedings of the IEEE 104 (2015),
no. 1, 58–92.



More references in the paper....

Thank You

Hope to get your feedback and answer your questions at the live
chat session
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