# On Coresets For Regularized Regression ICML 2020

Rachit Chhaya, Anirban Dasgupta and Supratim Shit

**IIT** Gandhinagar

June 15, 2020

Coresets: Small summary of data for some cost function as proxy for original data

- Coresets: Small summary of data for some cost function as proxy for original data
- ► Coresets for ridge regression (smaller) shown by [ACW17].

- Coresets: Small summary of data for some cost function as proxy for original data
- Coresets for ridge regression (smaller) shown by [ACW17].
- No study of coresets for regularized regression for general p-norm.

- Coresets: Small summary of data for some cost function as proxy for original data
- Coresets for ridge regression (smaller) shown by [ACW17].
- No study of coresets for regularized regression for general p-norm.

No coreset for  $\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^r + \lambda \|\mathbf{x}\|_q^s$ , where  $r \neq s$  smaller in size than that for  $\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^r$ 

- No coreset for  $\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_p^r + \lambda \|\mathbf{x}\|_q^s$ , where  $r \neq s$  smaller in size than that for  $\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_p^r$ 
  - ► Implies no coreset for Lasso smaller in size than that of least squares regression
- Introducing modified lasso and building smaller coreset for it.

- No coreset for  $\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_p^r + \lambda \|\mathbf{x}\|_q^s$ , where  $r \neq s$  smaller in size than that for  $\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_p^r$ 
  - ► Implies no coreset for Lasso smaller in size than that of least squares regression
- Introducing modified lasso and building smaller coreset for it.
- ▶ Coresets for  $\ell_p$ -regression with  $\ell_p$  regularization. Extension to multiple response regression

- No coreset for  $\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_p^r + \lambda \|\mathbf{x}\|_q^s$ , where  $r \neq s$  smaller in size than that for  $\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} \mathbf{b}\|_p^r$ 
  - Implies no coreset for Lasso smaller in size than that of least squares regression
- Introducing modified lasso and building smaller coreset for it.
- ▶ Coresets for  $\ell_p$ -regression with  $\ell_p$  regularization. Extension to multiple response regression
- ► Empirical Evaluations

### Coresets

#### Definition

For  $\epsilon>0$ , a dataset **A**, a non-negative function f and a query space **Q**, **C** is an  $\epsilon$ -coreset of **A** if  $\forall q\in \mathbf{Q}$ 

$$\left|f_{\mathbf{q}}(\mathsf{A}) - f_{\mathbf{q}}(\mathsf{C})\right| \leq \epsilon f_{\mathbf{q}}(\mathsf{A})$$

We construct coresets which are subsamples (rescaled) from the original data

The sensitivity of the  $i^{th}$  point of some dataset **X** for a function f and query space  $\mathbf{Q}$  is defined as

$$s_i = \sup_{\mathbf{q} \in \mathbf{Q}} \frac{f_{\mathbf{q}}(\mathbf{x}_i)}{\sum_{\mathbf{x}' \in \mathbf{X}} f_{\mathbf{q}}(\mathbf{x}')}.$$

#### Definition

The sensitivity of the  $i^{th}$  point of some dataset **X** for a function f and query space  $\mathbf{Q}$  is defined as  $s_i = \sup_{\mathbf{q} \in \mathbf{Q}} \frac{f_{\mathbf{q}}(\mathbf{x}_i)}{\sum_{\mathbf{x}' \in \mathbf{X}} f_{\mathbf{q}}(\mathbf{x}')}.$ 

$$s_i = \sup_{\mathbf{q} \in \mathbf{Q}} \frac{f_{\mathbf{q}}(\mathbf{x}_i)}{\sum_{\mathbf{x}' \in \mathbf{X}} f_{\mathbf{q}}(\mathbf{x}')}.$$

Determines highest fractional contribution of point to the cost function

#### Definition

The sensitivity of the  $i^{th}$  point of some dataset **X** for a function f and query space **Q** is defined as

$$s_i = \sup_{\mathbf{q} \in \mathbf{Q}} \frac{f_{\mathbf{q}}(\mathbf{x}_i)}{\sum_{\mathbf{x}' \in \mathbf{X}} f_{\mathbf{q}}(\mathbf{x}')}.$$

- Determines highest fractional contribution of point to the cost function
- Can be used to create coresets. Coreset size is function of sum of sensitivities and dimension of query space

#### Definition

The sensitivity of the  $i^{th}$  point of some dataset **X** for a function f and query space **Q** is defined as

$$s_i = \sup_{\mathbf{q} \in \mathbf{Q}} \frac{f_{\mathbf{q}}(\mathbf{x}_i)}{\sum_{\mathbf{x}' \in \mathbf{X}} f_{\mathbf{q}}(\mathbf{x}')}.$$

- Determines highest fractional contribution of point to the cost function
- Can be used to create coresets. Coreset size is function of sum of sensitivities and dimension of query space
- Upper bounds to sensitivities are enough [FL11, BFL16]

# Coresets for Regularized Regression

Regularization is important to prevent overfitting, numerical stability, induce sparsity etc.

# Coresets for Regularized Regression

▶ Regularization is important to prevent overfitting, numerical stability, induce sparsity etc.

We are interested in the following problem : For  $\lambda>0$ 

$$\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^r + \lambda \|\mathbf{x}\|_q^s$$

for  $p, q \ge 1$  and r, s > 0.

# Coresets for Regularized Regression

Regularization is important to prevent overfitting, numerical stability, induce sparsity etc.

We are interested in the following problem : For  $\lambda>0$ 

$$\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^r + \lambda \|\mathbf{x}\|_q^s$$

for  $p, q \ge 1$  and r, s > 0.

A coreset for this problem is  $(\tilde{\mathbf{A}}, \tilde{\mathbf{b}})$  such that  $\forall \mathbf{x} \in \mathbb{R}^d$  and  $\forall \lambda > 0$ ,

$$\|\widetilde{\mathbf{A}}\mathbf{x} - \widetilde{\mathbf{b}}\|_{p}^{r} + \lambda \|\mathbf{x}\|_{q}^{s} \in (1 \pm \epsilon)(\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{p}^{r} + \lambda \|\mathbf{x}\|_{q}^{s})$$

Coresets for unregularized regression work for regularized counterpart

- Coresets for unregularized regression work for regularized counterpart
- ► [ACW17] showed coreset for ridge regression using ridge leverage scores. Coreset smaller than coresets for least squares regression

- Coresets for unregularized regression work for regularized counterpart
- ► [ACW17] showed coreset for ridge regression using ridge leverage scores. Coreset smaller than coresets for least squares regression
- ► Intuition : Regularization imposes a constraint on the solution space.

- Coresets for unregularized regression work for regularized counterpart
- ► [ACW17] showed coreset for ridge regression using ridge leverage scores. Coreset smaller than coresets for least squares regression
- ► Intuition : Regularization imposes a constraint on the solution space.
- ► Can we expect all regularized problems to have a smaller size coresets, than the unregularized version? For e.g. for Lasso

#### Theorem

Given a matrix  $\mathbf{A} \in \mathbb{R}^{n \times d}$  and  $\lambda > 0$ , any coreset for the problem  $\|\mathbf{A}\mathbf{x}\|_p^r + \lambda \|\mathbf{x}\|_q^s$ , where  $r \neq s$ ,  $p, q \geq 1$  and r, s > 0, is also a coreset for  $\|\mathbf{A}\mathbf{x}\|_p^s$ .

#### Theorem

Given a matrix  $\mathbf{A} \in \mathbb{R}^{n \times d}$  and  $\lambda > 0$ , any coreset for the problem  $\|\mathbf{A}\mathbf{x}\|_p^r + \lambda \|\mathbf{x}\|_q^s$ , where  $r \neq s$ ,  $p, q \geq 1$  and r, s > 0, is also a coreset for  $\|\mathbf{A}\mathbf{x}\|_p^r$ .

**Implication**: Smaller coresets for regularized problem are not obtained when  $r \neq s$ 

#### Theorem

Given a matrix  $\mathbf{A} \in \mathbb{R}^{n \times d}$  and  $\lambda > 0$ , any coreset for the problem  $\|\mathbf{A}\mathbf{x}\|_p^r + \lambda \|\mathbf{x}\|_q^s$ , where  $r \neq s$ ,  $p, q \geq 1$  and r, s > 0, is also a coreset for  $\|\mathbf{A}\mathbf{x}\|_p^r$ .

**Implication**: Smaller coresets for regularized problem are not obtained when  $r \neq s$ 

The popular Lasso problem falls under this category and hence does not have a coreset smaller than one for least square regression.

#### Theorem

Given a matrix  $\mathbf{A} \in \mathbb{R}^{n \times d}$  and  $\lambda > 0$ , any coreset for the problem  $\|\mathbf{A}\mathbf{x}\|_p^r + \lambda \|\mathbf{x}\|_q^s$ , where  $r \neq s$ ,  $p, q \geq 1$  and r, s > 0, is also a coreset for  $\|\mathbf{A}\mathbf{x}\|_p^r$ .

**Implication**: Smaller coresets for regularized problem are not obtained when  $r \neq s$ 

The popular Lasso problem falls under this category and hence does not have a coreset smaller than one for least square regression.

Proof by Contradiction

# Modified Lasso

$$\min_{\mathbf{x} \in \mathbf{R}^d} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 + \lambda ||\mathbf{x}||_1^2$$

► Constrained version same as lasso

# Modified Lasso

$$\min_{\mathbf{x} \in \mathbf{R}^d} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 + \lambda ||\mathbf{x}||_1^2$$

- Constrained version same as lasso
- ► Empirically shown to induce sparsity like lasso

# Modified Lasso

$$\min_{\mathbf{x} \in \mathbf{R}^d} ||\mathbf{A}\mathbf{x} - \mathbf{b}||_2^2 + \lambda ||\mathbf{x}||_1^2$$

- Constrained version same as lasso
- ► Empirically shown to induce sparsity like lasso
- ► Allows smaller coreset than least squares regression

# Coreset for Modified Lasso

#### Theorem

Given a matrix  $\mathbf{A} \in \mathbb{R}^{n \times d}$ , corresponding vector  $\mathbf{b} \in \mathbb{R}^n$ , any coreset for the function  $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p + \lambda \|\mathbf{x}\|_p^p$  is also a coreset of the function  $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p + \lambda \|\mathbf{x}\|_p^p$  where  $q \leq p$ ,  $p, q \geq 1$ .

# Coreset for Modified Lasso

#### **Theorem**

Given a matrix  $\mathbf{A} \in \mathbb{R}^{n \times d}$ , corresponding vector  $\mathbf{b} \in \mathbb{R}^n$ , any coreset for the function  $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p + \lambda \|\mathbf{x}\|_p^p$  is also a coreset of the function  $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p + \lambda \|\mathbf{x}\|_p^p$  where  $q \leq p$ ,  $p, q \geq 1$ .

 Implication: Coresets for ridge regression also work for modified lasso

# Coreset for Modified Lasso

#### **Theorem**

Given a matrix  $\mathbf{A} \in \mathbb{R}^{n \times d}$ , corresponding vector  $\mathbf{b} \in \mathbb{R}^n$ , any coreset for the function  $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p + \lambda \|\mathbf{x}\|_p^p$  is also a coreset of the function  $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p + \lambda \|\mathbf{x}\|_p^p$  where  $q \leq p$ ,  $p, q \geq 1$ .

- Implication: Coresets for ridge regression also work for modified lasso
- Coreset of size  $O(\frac{sd_{\lambda}(\mathbf{A})\log sd_{\lambda}(\mathbf{A})}{\epsilon^2})$  with a high probability for modified lasso
- $sd_{\lambda}(\mathbf{A}) = \sum_{j \in [d]} \frac{1}{1 + \frac{\lambda}{\sigma_{i}^{2}}} \leq d$

# Coresets for $\ell_p$ Regression with $\ell_p$ Regularization

The  $\ell_p$  Regression with  $\ell_p$  Regularization is given as

$$\min_{\mathbf{x} \in \mathbb{R}^d} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_p^p + \lambda \|\mathbf{x}\|_p^p$$

Coresets for  $\ell_p$  regression constructed using the well conditioned basis

# Well conditioned Basis [DDH<sup>+</sup>09]

A matrix **U** is called an  $(\alpha, \beta, p)$  well-conditioned basis for **A** if  $\|\mathbf{U}\|_p \leq \alpha$  and  $\forall \mathbf{x} \in \mathbb{R}^d, \|\mathbf{x}\|_q \leq \beta \|\mathbf{U}\mathbf{x}\|_p$  where  $\frac{1}{p} + \frac{1}{q} = 1$ .

- Sampling using the  $p^{th}$  power of the p norm of rows of the  $(\alpha, \beta, p)$  well-conditioned basis of  $[\mathbf{A}, \mathbf{b}]$ , we can obtain a coreset of size  $\tilde{O}(\alpha\beta)^p$  with high probability for  $\ell_p$  regression
- coreset of size  $\tilde{O}(\alpha\beta)^p$  with high probability for  $\ell_p$  regression

  For  $\ell_p$  Regression with  $\ell_p$  Regularization we bound the

sensitivities by  $s_i \leq \frac{\beta^p \|\mathbf{u}_i\|_p^p}{1 + \frac{\lambda}{\|\mathbf{A}'\|_p^p}} + \frac{1}{n}$ 

- $\triangleright$  Sampling using the  $p^{th}$  power of the p norm of rows of the  $(\alpha, \beta, p)$  well-conditioned basis of [A, b], we can obtain a coreset of size  $\tilde{O}(\alpha\beta)^p$  with high probability for  $\ell_p$  regression

For 
$$\ell_p$$
 Regression with  $\ell_p$  Regularization we bound the

▶ Sum of sensitivities is bound by  $S \leq \frac{(\alpha \beta)^p}{1 + \frac{\lambda}{\|\mathbf{A}'\|_p^p}} + 1$ 

- sensitivities by  $s_i \leq \frac{\beta^p \|\mathbf{u}_i\|_p^p}{1 + \frac{\lambda}{\|\mathbf{A}^I\|_{p,p}^p}} + \frac{1}{n}$

► The coreset size is  $O\left(\frac{(\alpha\beta)^p d \log \frac{1}{\epsilon}}{\left(1 + \frac{\lambda}{\|\mathbf{A}'\|_{(\rho)}^p}\right)\epsilon^2}\right)$  whp

► The coreset size is 
$$O\left(\frac{(\alpha\beta)^p d \log \frac{1}{\epsilon}}{\left(1 + \frac{\lambda}{\|\mathbf{A}'\|_{(p)}^p}\right) \epsilon^2}\right)$$
 whp

ightharpoonup Coreset size is decreasing in  $\lambda$ 

► The coreset size is 
$$O\left(\frac{(\alpha\beta)^p d \log \frac{1}{\epsilon}}{\left(1 + \frac{\lambda}{\|\mathbf{A}'\|_{(p)}^p}\right)\epsilon^2}\right)$$
 whp

Coreset size is decreasing in  $\lambda$ 

- Specifically for Regularized Least Deviation problem we get coreset of size  $O\left(\frac{d^{5/2} \log \frac{1}{\epsilon}}{\left(1 + \frac{\lambda}{\|\mathbf{A}'\|_{1,1}}\right)\epsilon^{2}}\right)$
- Results extend to Multiresponse Regularized Regression also

# **Empirical Results**

# Sparsity Induced by Modified Lasso



# Comparison with Uniform Sampling

Matrix size :  $100000 \times 30$ 

Matrix with non uniform leverage scores [YMM15]

Table 1: Relative error of different coreset sizes for Modified Lasso,  $\lambda=0.5\,$ 

| Sample Size | Ridge Leverage<br>Scores Sampling | Uniform Sampling |
|-------------|-----------------------------------|------------------|
| 30          | 0.059                             | 0.8289           |
| 50          | 0.044                             | 0.8289           |
| 100         | 0.031                             | 0.8286           |
| 150         | 0.028                             | 0.8286           |
| 200         | 0.013                             | 0.8287           |

Table 2: Relative error of different coreset sizes for RLAD,  $\lambda=0.5\,$ 

| Sample Size | Sensitivity based Sampling | Uniform Sampling |
|-------------|----------------------------|------------------|
| 30          | 0.69                       | 385.99           |
| 50          | 0.65                       | 112.70           |
| 100         | 0.34                       | 98.53            |
| 150         | 0.19                       | 96.09            |
| 200         | 0.17                       | 27.49            |

# Conclusion and Future Work

▶ We present first work on coresets for regularized regression for general *p* norm.

### **Open Questions**

- Tighter bounds on sensitivity scores
- Coresets for other models with regularization and/or constraints.

### References I

- Haim Avron, Kenneth L Clarkson, and David P Woodruff, Sharper bounds for regularized data fitting, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
- Vladimir Braverman, Dan Feldman, and Harry Lang, New frameworks for offline and streaming coreset constructions, arXiv preprint arXiv:1612.00889 (2016).
- Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W Mahoney, Sampling algorithms and coresets for  $\ell_p$  regression, SIAM Journal on Computing 38 (2009), no. 5, 2060–2078.

### References II

- Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan, Sampling algorithms for I 2 regression and applications, Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, Society for Industrial and Applied Mathematics, 2006, pp. 1127–1136.
- Dan Feldman and Michael Langberg, A unified framework for approximating and clustering data, Proceedings of the forty-third annual ACM symposium on Theory of computing, ACM, 2011, pp. 569–578.
- David Haussler, Sphere packing numbers for subsets of the boolean n-cube with bounded vapnik-chervonenkis dimension, Journal of Combinatorial Theory, Series A **69** (1995), no. 2, 217–232.

### References III

- Michael Langberg and Leonard J Schulman, *Universal* ε-approximators for integrals, Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, SIAM, 2010, pp. 598–607.
- Mert Pilanci and Martin J Wainwright, Randomized sketches of convex programs with sharp guarantees, IEEE Transactions on Information Theory **61** (2015), no. 9, 5096–5115.
- Jiyan Yang, Xiangrui Meng, and Michael W Mahoney, Implementing randomized matrix algorithms in parallel and distributed environments, Proceedings of the IEEE **104** (2015), no. 1, 58–92.

Thank You

Hope to get your feedback and answer your questions at the live chat session

Take Care

More references in the paper....