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Our Contributions

» No coreset for minycga |Ax — b, + A[[x||5, where r # s
smaller in size than that for min,ga [[Ax — b||]

» Implies no coreset for Lasso smaller in size than that of least
squares regression

» Introducing modified lasso and building smaller coreset for it.

» Coresets for £,-regression with ¢, regularization. Extension to
multiple response regression

» Empirical Evaluations



Coresets

For e > 0, a dataset A, a non-negative function fand a query
space Q, C is an e-coreset of A if Vg € Q

f(A) - fq(C)\ < cfy(A)

We construct coresets which are subsamples (rescaled) from the
original data
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Sensitivity [LS10]

Definition

The sensitivity of the it point of some dataset X for a func-

tion f and query space Q is defined as
o fa(xi)
5i = SUPqeQ Zx/Zx fq(x')

» Determines highest fractional contribution of point to the cost
function

» Can be used to create coresets. Coreset size is function of sum
of sensitivities and dimension of query space

» Upper bounds to sensitivities are enough [FL11, BFL16]
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Coresets for Regularized Regression

» Regularization is important to prevent overfitting, numerical
stability, induce sparsity etc.

We are interested in the following problem : For A > 0

H _ r S
min [ Ax — b+ Al

for p,g>1and r,s > 0. o
A coreset for this problem is (A, b) such that ¥x € R? and VYA > 0,

1A% = blIf, + Allx|lg € (1= e)(||Ax = bl + Allx||3)
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Main Question

» Coresets for unregularized regression work for regularized
counterpart

» [ACW17] showed coreset for ridge regression using ridge
leverage scores. Coreset smaller than coresets for least squares
regression

» Intuition : Regularization imposes a constraint on the solution
space.

» Can we expect all regularized problems to have a smaller size
coresets, than the unregularized version? For e.g. for Lasso
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Our Main Result

Given a matrix A € R™9 and A > 0, any coreset for the
problem [|Ax||; + A[[x||5, where r # s, p,q > 1and r,s >0,
is also a coreset for ||Ax||5.

Implication: Smaller coresets for regularized problem are not
obtained when r # s

The popular Lasso problem falls under this category and hence does
not have a coreset smaller than one for least square regression.

Proof by Contradiction
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Modified Lasso

. 2 2
min [|Ax — b|[3 + A[|x||1
x€Rd

» Constrained version same as lasso
» Empirically shown to induce sparsity like lasso

» Allows smaller coreset than least squares regression
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Coreset for Modified Lasso

Given a matrix A € R™9, corresponding vector b € R”, any
coreset for the function ||Ax — b||5 + A||x||5 is also a coreset
of the function ||Ax — b||5 + A||x||5 where ¢ < p, p,q > 1.

» Implication: Coresets for ridge regression also work for
modified lasso

» Coreset of size O(w) with a high probability for
modified lasso




Coresets for £, Regression with ¢, Regularization

The £, Regression with ¢, Regularization is given as

: N p
min || Ax — b2 + Al

Coresets for £, regression constructed using the well conditioned
basis

Well conditioned Basis [DDH"09]

A matrix U is called an («, 3, p) well-conditioned basis for A
if |U[lp < @ and ¥x € RY, ||x||q < B]|UX||, where 241 = 1.
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(a, B, p) well-conditioned basis of [A, b], we can obtain a
coreset of size O(«3)P with high probability for ¢, regression

» For £, Regression with £, Regularization we bound the

Cie e Plli. 1P
sensitivities by s; < f”i”” +1
HA'llfp)

» Sum of sensitivities is bound by S < % +1

P
I
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> The coreset size is O (22dlec whp
(1)

P
(p)

» Coreset size is decreasing in A

» Specifically for Regularized Least Deviation problem we get

. d®/2log
coreset of size O —— 2
(1++)62

1A% ()

» Results extend to Multiresponse Regularized Regression also



Empirical Results
Sparsity Induced by Modified Lasso
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Comparison with Uniform Sampling

Matrix size : 100000 x 30
Matrix with non uniform leverage scores [YMM15]

Table 1: Relative error of different coreset sizes for Modified Lasso,
A=05

Sample Size  Ridge Leverage  Uniform Sampling
Scores Sampling

30 0.059 0.8289
50 0.044 0.8289
100 0.031 0.8286
150 0.028 0.8286

200 0.013 0.8287




Table 2: Relative error of different coreset sizes for RLAD, A = 0.5

Sample Size Sensitivity Uniform Sampling
based Sampling

30 0.69 385.99

50 0.65 112.70

100 0.34 98.53

150 0.19 96.09

200 0.17 27.49




Conclusion and Future Work

» We present first work on coresets for regularized regression for
general p norm.

Open Questions
» Tighter bounds on sensitivity scores

» Coresets for other models with regularization and/or
constraints.
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Thank You

Hope to get your feedback and answer your questions at the live
chat session
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