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I No coreset for minx∈Rd ‖Ax− b‖rp + λ‖x‖sq, where r 6= s
smaller in size than that for minx∈Rd ‖Ax− b‖rp

I Implies no coreset for Lasso smaller in size than that of least
squares regression

I Introducing modified lasso and building smaller coreset for it.
I Coresets for `p-regression with `p regularization. Extension to

multiple response regression
I Empirical Evaluations
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Coresets

Definition

For ε > 0, a dataset A, a non-negative function f and a query
space Q, C is an ε-coreset of A if ∀q ∈ Q∣∣∣∣fq(A)− fq(C)

∣∣∣∣ ≤ εfq(A)

We construct coresets which are subsamples (rescaled) from the
original data



Sensitivity [LS10]

Definition

The sensitivity of the i th point of some dataset X for a func-
tion f and query space Q is defined as
si = supq∈Q

fq(xi)∑
x′∈X fq(x′) .

I Determines highest fractional contribution of point to the cost
function

I Can be used to create coresets. Coreset size is function of sum
of sensitivities and dimension of query space

I Upper bounds to sensitivities are enough [FL11, BFL16]
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Coresets for Regularized Regression

I Regularization is important to prevent overfitting, numerical
stability, induce sparsity etc.

We are interested in the following problem : For λ > 0

min
x∈Rd
‖Ax− b‖rp + λ‖x‖sq

for p, q ≥ 1 and r , s > 0.
A coreset for this problem is (Ã, b̃) such that ∀x ∈ Rd and ∀λ > 0,

‖~Ax−~b‖rp + λ‖x‖sq ∈ (1± ε)(‖Ax− b‖rp + λ‖x‖sq)
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Main Question

I Coresets for unregularized regression work for regularized
counterpart

I [ACW17] showed coreset for ridge regression using ridge
leverage scores. Coreset smaller than coresets for least squares
regression

I Intuition : Regularization imposes a constraint on the solution
space.

I Can we expect all regularized problems to have a smaller size
coresets, than the unregularized version? For e.g. for Lasso
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Our Main Result

Theorem

Given a matrix A ∈ Rn×d and λ > 0, any coreset for the
problem ‖Ax‖rp + λ‖x‖sq, where r 6= s, p, q ≥ 1 and r , s > 0,
is also a coreset for ‖Ax‖rp.

Implication: Smaller coresets for regularized problem are not
obtained when r 6= s

The popular Lasso problem falls under this category and hence does
not have a coreset smaller than one for least square regression.

Proof by Contradiction
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min
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I Constrained version same as lasso

I Empirically shown to induce sparsity like lasso
I Allows smaller coreset than least squares regression
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Coreset for Modified Lasso

Theorem

Given a matrix A ∈ Rn×d , corresponding vector b ∈ Rn, any
coreset for the function ‖Ax− b‖pp + λ‖x‖pp is also a coreset
of the function ‖Ax− b‖pp + λ‖x‖pq where q ≤ p, p, q ≥ 1.

I Implication: Coresets for ridge regression also work for
modified lasso

I Coreset of size O( sdλ(A) log sdλ(A)
ε2

) with a high probability for
modified lasso

I sdλ(A) =
∑

j∈[d ]
1

1+ λ

σ2
j

≤ d
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Coresets for `p Regression with `p Regularization

The `p Regression with `p Regularization is given as

min
x∈Rd
‖Ax− b‖pp + λ‖x‖pp

Coresets for `p regression constructed using the well conditioned
basis

Well conditioned Basis [DDH+09]

A matrix U is called an (α, β, p) well-conditioned basis for A
if ‖U‖p ≤ α and ∀x ∈ Rd , ‖x‖q ≤ β‖Ux‖p where 1

p +
1
q = 1.



I Sampling using the pth power of the p norm of rows of the
(α, β, p) well-conditioned basis of [A,b], we can obtain a
coreset of size Õ(αβ)p with high probability for `p regression

I For `p Regression with `p Regularization we bound the

sensitivities by si ≤
βp‖ui‖pp

1+ λ

‖A′‖p
(p)

+ 1
n

I Sum of sensitivities is bound by S ≤ (αβ)p

1+ λ

‖A′‖p
(p)

+ 1



I Sampling using the pth power of the p norm of rows of the
(α, β, p) well-conditioned basis of [A,b], we can obtain a
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I The coreset size is O
(

(αβ)pd log 1
ε(

1+ λ

‖A′‖p
(p)

)
ε2

)
whp

I Coreset size is decreasing in λ

I Specifically for Regularized Least Deviation problem we get

coreset of size O

(
d5/2 log 1

ε(
1+ λ

‖A′‖(1)

)
ε2

)
I Results extend to Multiresponse Regularized Regression also



I The coreset size is O
(

(αβ)pd log 1
ε(

1+ λ

‖A′‖p
(p)

)
ε2

)
whp

I Coreset size is decreasing in λ

I Specifically for Regularized Least Deviation problem we get

coreset of size O

(
d5/2 log 1

ε(
1+ λ

‖A′‖(1)

)
ε2

)
I Results extend to Multiresponse Regularized Regression also



I The coreset size is O
(

(αβ)pd log 1
ε(

1+ λ

‖A′‖p
(p)

)
ε2

)
whp

I Coreset size is decreasing in λ

I Specifically for Regularized Least Deviation problem we get

coreset of size O

(
d5/2 log 1

ε(
1+ λ

‖A′‖(1)

)
ε2

)
I Results extend to Multiresponse Regularized Regression also



Empirical Results
Sparsity Induced by Modified Lasso
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Comparison with Uniform Sampling

Matrix size : 100000× 30
Matrix with non uniform leverage scores [YMM15]

Table 1: Relative error of different coreset sizes for Modified Lasso,
λ = 0.5

Sample Size Ridge Leverage Uniform Sampling
Scores Sampling

30 0.059 0.8289
50 0.044 0.8289
100 0.031 0.8286
150 0.028 0.8286
200 0.013 0.8287



Table 2: Relative error of different coreset sizes for RLAD, λ = 0.5

Sample Size Sensitivity Uniform Sampling
based Sampling

30 0.69 385.99
50 0.65 112.70
100 0.34 98.53
150 0.19 96.09
200 0.17 27.49



Conclusion and Future Work

I We present first work on coresets for regularized regression for
general p norm.

Open Questions
I Tighter bounds on sensitivity scores
I Coresets for other models with regularization and/or

constraints.
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Hope to get your feedback and answer your questions at the live
chat session
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