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Introduction

I reinforcement learning (RL) is about learning from interaction with
delayed feedback

– decide action to take, which affects the next state of environment
– need sequential decision making

I most of discrete RL algorithms scales poorly for tasks in continuous
space

– discretize state or/and action space
– curse of dimensionality
– sample inefficiency
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Linear Quadratic Regulator

I Linear Quadratic Regulator (LQR) has rich applications for
continuous space task

– e.g., motion planning, trajectory optimization, portfolio

I Infinite horizon (undiscounted) LQR problem

minimize
π

E

( ∞∑
t=0

xTt Qxt + uTt Rut

)
(1)

subject to xt+1 = Axt +But,

ut = π(xt), x0 ∼ D,

where A ∈ Rn×n, B ∈ Rn×m, Q � 0, and R � 0.

– quadratic cost Q,R and linear dynamics A,B
– Q,R set relative weights of state deviation and input usage
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Linear Quadratic Regulator (Continued)

I LQR problem

minimize
π

E

( ∞∑
t=0

xTt Qxt + uTt Rut

)
subject to xt+1 = Axt +But,

ut = π(xt), x0 ∼ D,
where A ∈ Rn×n, B ∈ Rn×m, Q � 0, and R � 0.

I well-known facts
– linear optimal policy (or control gain) π?(x) = Kx,
– quadratic optimal value function (cost-to-go) V ?(x) = xTPx s.t.

P = ATPA+Q−ATPB(BTPB +R)−1BTPA,

K = −(BTPB +R)−1BTPA.

– P can be derived efficiently, e.g., Riccati recursion, SDP, etc

I many variants and extensions
– e.g., time-varying, averaged or discounted, jumping LQR etc.
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Structured Linear Policy

I can we find the structured linear policy for LQR?

I structure can mean (block) sparse, low-rank, etc

– more interpretable, memory and computationally efficient, well-suited
for distributed setting

– Often, structure policy is related to physical decision system
I e.g., data cooling system need to install/arrange cooling

infrastructure

I To tackle this, we develop

– formulation, algorithm, theory and practice
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Formulation

I regularized LQR problem

minimize
K

f(K)︷ ︸︸ ︷
E

( ∞∑
t=0

xTt Qxt + uTt Rut

)
+λr(K) (2)

subject to xt+1 = Axt +But,

ut = Kxt, x0 ∼ D,

– explicitly restrict policy to linear class, i.e., ut = Kxt
– value function is still quadratic, i.e., V (x) = xTPx for some P
– convex regularizer with (scalar) parameter λ ≥ 0

I regularizer r(K) induces the policy structure
– lasso ‖K‖1 =

∑
i,j |Ki,j | for sparse structure

– group lasso ‖K‖G,2 =
∑
g∈G ‖Kg‖2 for block-diagonal structure

– nuclear-norm ‖K‖∗ =
∑
i σi(K) for low-rank structure

– proximity ‖K −Kref‖2F for some Kref ∈ Rn×m,
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Structured Policy Iteration (S-PI)

I When model is known, S-PI repeats

– (1) Policy (and covariance) evaluation
I solve Lyapunov equations to return (P i,Σi)

(A+BKi)TP i(A+BKi)− P i +Q+ (Ki)TRKi = 0,

(A+BKi)Σi(A+BKi)T − Σi + Σ0 = 0.

– (2) Policy improvement
I compute gradient ∇Kf(Ki) = 2

((
R+BTP iB

)
Ki +BTP iA

)
Σi

I apply proximal gradient step under linesearch

I note that

– Lyapunov equation requires O(n3) to solve
– (almost) no hyperparameter to tune under linesearch (LS),
– LS make stability ρ(A+BKi) < 1 satisfied
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Convergence

Theorem (Park et al. ’20) Assume K0 s.t. ρ(A + BK0) < 1. Ki from
S-PI Algorithm converges to the stationary point K?. Moreover, it converges
linearly, i.e., after N iterations,∥∥∥KN −K?

∥∥∥2

F
≤
(

1−
1

κ

)N ∥∥K0 −K?
∥∥2

F
.

Here, κ = 1/ (ηminσmin(Σ0)σmin(R))) > 1 where

ηmin = hη

(
σmin(Σ0), σmin(Q),

1

λ
,

1

‖A‖
,

1

‖B‖
,

1

‖R‖
,

1

∆
,

1

F (K0)

)
, (3)

for some non-decreasing function hη on each argument.

– Riccati recursion can give stabilizing initial policy K0

– (global bound on) fixed stepsize ηmin depends on model parameters
– note ηmin ∝ 1/λ
– in practice using LS, stepsize does have to be tuned or calculated
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Model-free Structured Policy Iteration

I when model is unknown, S-PI repeats
– (1) Perturbed policy evaluation

I get perturbation and (perturbed) cost-to-go {f̂j , Uj}Ntraj

j=1
for each j = 1, . . . , Ntraj

sample Uj ∼ Uniform(Sr) to get a perturbed K̂i = Ki + Uj

roll out K̂i over the horizon H to estimate the cost-to-go

f̂j =
H∑
t=0

g(xt, K̂
ixt)

– (2) Policy improvement
I compute the (noisy) gradient

̂∇Kf(Ki) =
1

Ntraj

Ntraj∑
j=1

n

r2
f̂jUj

I apply proximal gradient step

I note that
– smoothing procedure adapted to estimate noisy gradient
– (Ntraj, H, r) are additional hyperparameters to tune
– LS is not applicable
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Convergence

Theorem (Park et al. ’20)
Suppose F (K0) is finite, Σ0 � 0, and that x0 ∼ D has norm bounded by D
almost surly. Suppose the parameters in Algorithm ?? are chosen from

(Ntraj, H, 1/r) = h

(
n,

1

ε
,

1

σmin(Σ0)σmin(R)
,

D2

σmin(Σ0)

)
.

for some polynomials h. Then, with the same stepsize in Eq. (3), there exist

iteration N at most 4κ log

(
‖K0−K?‖

F
ε

)
such that

∥∥KN −K?
∥∥ ≤ ε with

at least 1− o(εn−1) probability. Moreover, it converges linearly,

∥∥Ki −K?
∥∥2 ≤

(
1−

1

2κ

)i ∥∥K0 −K?
∥∥2
,

for the iteration i = 1, . . . , N , where κ = ησmin(Σ0)σmin(R) > 1.

– Assume K0 is stabilizing policy but cannot use Riccati here
– here (Ntraj, H, r) are hyperparameters to tune
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Experiment (Setting)

I Consider unstable Laplacian system A ∈ Rn×n where

Aij =


1.1, i = j

0.1, i = j + 1 or j = i+ 1

0, otherwise

B = Q = In ∈ Rn×n and R = 1000× In ∈ Rn×n.

– unstable open loop system, i.e., ρ(A) ≥ 1
– extremely sensitive to parameters (even under known model setting)
– less in favor of the generic model-free RL approaches to deploy

I Model and S-PI algorithm parameter under known model

– system size n ∈ [3, 500]
– lasso penalty with λ ∈ [10−2, 106]
– LS with initial stepsize η = 1

λ
with backtracking factor β = 1

2

– For fixed stepsize, select η = O
(

1
λ

)
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Experiment (Continued)

I Convergence behavior under LS and scalability
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– S-PI with LS converges very fast over various n and λ
– scales well for large system, even with computational bottleneck on

solving Lyapunov equation
– For n = 500, takes less than 2 mins (MacBook Air)
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Experiment (Continued)

I Dependency of stepsize η on λ.
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Largest fixed stetpsize with stable system

– vary λ under same system
– largest (fixed) stepsize for stable (closed) system, i.e., A+BKi < 1

is non-increasing, i.e., ηfixed ∝ 1
λ
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Experiment (Continued)

I Trade off between LQR performance and structure K
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– LQR solution Klqr, and S-PI solution K?

– λ increases, LQR cost f(K?) increases whereas cardinality decreases
(sparsitiy is improved).

– In this range, S-PI barely changes LQR cost but improved the
sparsity more than 50%.
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Experiment (Continued)

I sparsity pattern of policy matrix
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– sparsity pattern (location of non-zero elements) of the policy matrix
with λ = 600 and λ = 620.
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Challenge on model-free approach

I model-free approach is challenging and unstable

– especially unstable open loop system ρ(A) < 1
– suffer similar difficulty to the model-free policy gradient method

[Fazel et al., 2018] for LQR
– finding stabilizing initial policy K0 is non-trivial unless ρ(A) < 1
– suffer high variance, especially sensitive to smoothing parameter r

I open problems and algorithmic efforts needed in practice

– variance reduction
– rule of thumb to tune hyperparamters

I still, promising as a different class of model-free approach

– no discretization
– no need to compute Q(s, a) pair (like in REINFORCE)
– seems to work for averaged cost of LQR (easier class of LQR)
– more in longer version of paper

Experiment 16



Summary

I formulate regularized LQR problem to derive structured policy

I develop S-PI algorithm for both model-based and model-free
approach with theoretical guarantees

I model-based S-PI works well in practice with (almost) no
hyperparameter tuning

I model-free S-PI is still promising but challenging
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Thank you!

Summary 18


