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Introduction

> reinforcement learning (RL) is about learning from interaction with
delayed feedback
— decide action to take, which affects the next state of environment
— need sequential decision making

» most of discrete RL algorithms scales poorly for tasks in continuous
space
— discretize state or/and action space
— curse of dimensionality
— sample inefficiency



Linear Quadratic Regulator

» Linear Quadratic Regulator (LQR) has rich applications for
continuous space task

— e.g., motion planning, trajectory optimization, portfolio

» Infinite horizon (undiscounted) LQR problem

o0

minimize E <Z xtTQ:vt + utTRut>

T
t=0

subject to  x;11 = Axy + Buy,

ug = m(xy), o ~ D,

where A € R"*"™" B e R"™™ (Q =0, and R > 0.

— quadratic cost @, R and linear dynamics A, B
— @, R set relative weights of state deviation and input usage

Preliminary



Linear Quadratic Regulator (Continued)

» LQR problem
minimize E <Z T Quy + ufRut>
T =0
subject to  z;11 = Axy + Buy,
uy = m(xy), o ~ D,

where A € R"*" B e R"™™ Q > 0, and R > 0.

» well-known facts
— linear optimal policy (or control gain) 7*(z) = K=z,
— quadratic optimal value function (cost-to-go) V*(z) = 27 Pz s.t.

P=A"PA+Q - A"PB(B"PB+ R)"'B" PA,
K =—(B"PB+ R) 'B"PA.

— P can be derived efficiently, e.g., Riccati recursion, SDP, etc

» many variants and extensions

Preliminary e.g., time-varying, averaged or discounted, jumping LQR etc.



Structured Linear Policy

» can we find the structured linear policy for LQR?

» structure can mean (block) sparse, low-rank, etc

— more interpretable, memory and computationally efficient, well-suited
for distributed setting
— Often, structure policy is related to physical decision system

> e.g., data cooling system need to install/arrange cooling
infrastructure

» To tackle this, we develop

— formulation, algorithm, theory and practice

Preliminary



Formulation

» regularized LQR problem

fK)

mini}r{nize E thTth +ul Ruy | +Mr(K) (2)
=0
SUbjeCt to Ti41 = Al’t + But,
Uy = Kl’t, o ~ D,

— explicitly restrict policy to linear class, i.e., us = Ka;
— value function is still quadratic, i.e., V(z) = ¥ Pz for some P
— convex regularizer with (scalar) parameter A > 0

» regularizer r(K) induces the policy structure
= lasso [|K[[1 =3, ; | Ki;| for sparse structure
— group lasso |[K|lg,2 = >_ ¢ [[Kql|, for block-diagonal structure
- nuclear-norm ||K||« =", 0i(K) for low-rank structure
— proximity ||K — K™f||% for some K™ € R™*™,

Preliminary



Structured Policy Iteration (S-Pl)

» When model is known, S-PI repeats
— (1) Policy (and covariance) evaluation
> solve Lyapunov equations to return (P*,3*)
(A4+ BKHYTPI(A+ BKY) — PP+ Q+ (KY)TRK® =0,
(A+ BKH)ZH (A4 BKHT -5t 439 = 0.
— (2) Policy improvement

> compute gradient Vi f(K%) =2 ((R+ BTP'B) K' + BT Pi4) %t
> apply proximal gradient step under linesearch

» note that

— Lyapunov equation requires O(n?*) to solve
— (almost) no hyperparameter to tune under linesearch (LS),
— LS make stability p(A + BK") < 1 satisfied

Part 1: Model-based approach for regularized LQR



Convergence

Theorem (Park et al. '20) Assume K° s.t. p(A + BK?) < 1. K* from
S-PI Algorithm converges to the stationary point K*. Moreover, it converges
linearly, i.e., after IV iterations,

2 1 N 0 * (12
< (1-5) Io- kI

Here, K = 1/ (MminOmin (Z0)0omin(R))) > 1 where

HKN _K*

1
Mmin = h'r] (Umin(zo)y Umin(Q)’ Xy

N &)
A IBIT IR A F(K°) )

for some non-decreasing function h; on each argument.

Riccati recursion can give stabilizing initial policy K°
(global bound on) fixed stepsize fmin depends on model parameters
— note Mmin x 1/A
— in practice using LS, stepsize does have to be tuned or calculated
Part 1: Model-based approach for regularized LQR



Model-free Structured Policy Iteration

» when model is unknown, S-PI repeats
— (1) Perturbed policy evaluation
> get perturbation and (perturbed) cost-to-go {f7, UJ}
for each j =1,..., Niraj
sample U7 ~ Uniform(Sr) to get a perturbed Ki=Ki+UJ
roll out K over the horizon H to estimate the cost-to-go

NtraJ

H
F=3 glar, K'ar)
t=0
— (2) Policy improvement
» compute the (noisy) gradient

. 7f.7UJ

Vi (K) = &

traj =1

> apply proximal gradient step

» note that
— smoothing procedure adapted to estimate noisy gradient
— (Naj, H,7) are additional hyperparameters to tune
— LS is not applicable
Part 2: Model-free approach for regularized LQR



Convergence

Theorem (Park et al. '20)
Suppose F(K©) is finite, £o > 0, and that 9 ~ D has norm bounded by D
almost surly. Suppose the parameters in Algorithm ?? are chosen from

1 1 D?
(Ntraijvl/r):h<n777 ) )
€ O'min(z())o'min(R) Umin(EO)

for some polynomials h. Then, with the same stepsize in Eq. (3), there exist

KO—K*
iteration N at most 4k log w) such that ||KN — K*H < e with

€

at least 1 — o(e™~1) probability. Moreover, it converges linearly,
i
et = reeP < (1= 5 ) KO - P,
2K

for the iteration ¢ = 1,..., N, where kK = 9o min (20)0min(R) > 1.

— Assume K is stabilizing policy but cannot use Riccati here
— here (Niraj, H, ) are hyperparameters to tune

Part 2: Model-free approach for regularized LQR
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Experiment (Setting)

» Consider unstable Laplacian system A € R™*™ where

1.1, i=j
Aij: 0.1, i:j+1orj:i+1
0, otherwise

B=Q =1, €R"™" and R =1000 x [, € R**",
— unstable open loop system, i.e., p(A) > 1
— extremely sensitive to parameters (even under known model setting)
— less in favor of the generic model-free RL approaches to deploy

» Model and S-PI algorithm parameter under known model
— system size n € [3,500]
— lasso penalty with A € [1072,10°]
— LS with initial stepsize = § with backtracking factor 8 =

— For fixed stepsize, select n = O (1)

Experiment 11



Experiment (Continued)

» Convergence behavior under LS and scalability

Convergence over differnt A

10 — A=588 100
, A=597
10 —— A=606 80
— A=615
— A=624
60

40

time(sec)

20

T 7 [ 100 200 300 400
iteration i dimension n

S-PI with LS converges very fast over various n and A

scales well for large system, even with computational bottleneck on
solving Lyapunov equation

For n = 500, takes less than 2 mins (MacBook Air)

Experiment
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Experiment (Continued)

» Dependency of stepsize 17 on \.
Largest fixed stetpsize with stable system

105 4

106 4

stepsize Nfixed

10° 10° 108
— vary A under same system A
— largest (fixed) stepsize for stable (closed) system, i.e., A+ BK" <1

is non-increasing, i.e., Nfixed X %

Experiment
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Experiment (Continued)

» Trade off between LQR performance and structure K
The effect of different A
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A
— LQR solution K'" and S-PI solution K*
— Xincreases, LQR cost f(K™) increases whereas cardinality decreases
(sparsitiy is improved).
— In this range, S-PI barely changes LQR cost but improved the
sparsity more than 50%.

Experiment



Experiment (Continued)

> sparsity pattern of policy matrix

A =600, card(K)=132 A =620, card(K)=62
0 5 10 15 0 5 10 15

0

— sparsity pattern (location of non-zero elements) of the policy matrix
with A = 600 and A\ = 620.

Experiment



Challenge on model-free approach

» model-free approach is challenging and unstable
— especially unstable open loop system p(A4) < 1
— suffer similar difficulty to the model-free policy gradient method
[Fazel et al., 2018] for LQR
— finding stabilizing initial policy K is non-trivial unless p(A) < 1
— suffer high variance, especially sensitive to smoothing parameter r

» open problems and algorithmic efforts needed in practice

— variance reduction
— rule of thumb to tune hyperparamters

» still, promising as a different class of model-free approach
— no discretization
— no need to compute Q(s,a) pair (like in REINFORCE)
— seems to work for averaged cost of LQR (easier class of LQR)
— more in longer version of paper

Experiment 16



Summary

» formulate regularized LQR problem to derive structured policy

» develop S-PI algorithm for both model-based and model-free
approach with theoretical guarantees

» model-based S-PI works well in practice with (almost) no
hyperparameter tuning

» model-free S-Pl is still promising but challenging

Summary 17



Summary

Thank you!
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