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Goal: Large scale linear systems

• Solve 𝐴𝑥 = 𝑏

• 𝐴 is huge, need 𝑂 𝑛 solution!

• Some applications:

• Discretization of PDEs

• Sparse graph analysis
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Efficient linear solvers

• Decades of research on efficient iterative solvers for large-
scale systems

• We focus on Algebraic Multigrid (AMG) solvers

• Can we use machine learning to improve AMG solvers?

• Follow-up to Greenfeld et al. (2019) on Geometric Multigrid



What AMG does

• AMG works by successively 
coarsening the system of 
equations, and solving on multiple 
scales

• Prolongation operator 𝑃 that 
creates the hierarchy

• We want to learn a mapping 𝑃𝜃 𝐴
with fast convergence



Learning 𝑃
• Unsupervised loss function over distribution 𝒟:

min
𝜃

𝔼𝐴~𝒟 𝜌 𝑀 𝐴, 𝑃𝜃 𝐴

• 𝜌 𝑀 𝐴, 𝑃𝜃 𝐴 measures the convergence factor of the solver

• 𝑃𝜃 𝐴 is a NN mapping system 𝐴 to prolongation operator 𝑃



Graph neural network

• Sparse matrices can be represented as graphs – we use a Graph 
Neural Network as the mapping 𝑃𝜃 𝐴
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Benefits of our approach

• Unsupervised training– rely on algebraic properties

• Generalization –learn general rules for wide class of problems

• Efficient training – Fourier analysis reduces computational 
burden



Sample result; lower is better, ours is lower!

Finite Element PDE



Outline

• Overview of AMG

• Learning objective

• Graph neural network

• Results



1st ingredient of AMG: Relaxation
• System of equations: 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 +⋯𝑎𝑖𝑛𝑥𝑛 = 𝑏𝑖

• Rearrange: 𝑥𝑖 =
1

𝑎𝑖𝑖
𝑏𝑖 − σ𝑗≠𝑖 𝑎𝑖𝑗𝑥𝑗

• Start with an initial guess 𝑥𝑖
(0)

• Iterate until convergence: 𝑥𝑖
(𝑘+1)

=
1

𝑎𝑖𝑖
𝑏𝑖 − σ𝑗≠𝑖 𝑎𝑖𝑗𝑥𝑗

(𝑘)



Relaxation smooths the error

• Since relaxation is a local procedure, its effect is to smooth 
out the error

• How to accelerate relaxation by dealing with low-frequency 
errors?



2nd ingredient of AMG: Coarsening

• Smooth error, and then coarsen

• Error is no longer smooth on coarse grid; relaxation is fast 
again!

Relax Coarsen



Putting it all together
Relaxation 
(smoothing)

Error on original problem

Restriction

Error approximated on 
coarsened problem

Prolongation

Smaller Error on original problem



Learning objective



Prolongation operator

• Focus of AMG is prolongation operator 𝑃 for defining scales 
and moving between them

• 𝑃 needs to be sparse for efficiency, but also approximate well 
smooth errors



Learning 𝑃

• Quality can be quantified by estimating by how much the 
error is reduced each iteration:
• 𝑒(𝑘+1) = 𝑀 𝐴, 𝑃 𝑒(𝑘)

• 𝑀 𝐴,𝑃 = 𝑆 𝐼 − 𝑃 𝑃𝑇𝐴𝑃 −1𝑃𝑇𝐴 𝑆
• Asymptotically: ‖𝑒(𝑘+1)‖ ≈ 𝜌 𝑀 ‖𝑒(𝑘)‖
• Spectral radius: 𝜌 𝑀 = max 𝜆1 , … , 𝜆𝑛

• Our learning objective:

min
𝜃

𝔼𝐴~𝒟 𝜌 𝑀 𝐴, 𝑃𝜃 𝐴



Graph neural network



Representing 𝑃𝜃

• Sparse matrix 𝐴 ∈ ℝ𝑛×𝑛 to sparse matrix 𝑃 ∈ ℝ𝑛×𝑛𝑐

• Mapping should be efficient

• Matrices can be represented as graphs with edge weights



Representing 𝑃𝜃
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GNN architecture

• Message Passing architectures can handle any graph, and 
have 𝑂 𝑛 runtime

• Graph Nets framework from Battaglia et al. (2018) generalize 
many MP variants, handle edge features
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Results



Spectral clustering

• Bottleneck is an iterative eigenvector algorithm 
that uses a linear solver

• Evaluate number of iterations required to reach 
convergence

• Train network on dataset of small 2D clusters, 
test on various 2D and 3D distributions



Conclusion

• Algebraic Multigrid is an effective 𝑶 𝒏 solver for a wide class of linear 
systems 𝐴𝑥 = 𝑏

• Main challenge in AMG is constructing prolongation operator 𝑷, which 
controls how information is passed between grids

• We use an 𝑂 𝑛 , edge-based GNN to learn a mapping 𝑃𝜃 𝐴 , without 
supervision

• GNN generalizes to larger problems, with different distributions of 
sparsity pattern and elements



Take home messages

• In a well-developed field, might make sense to apply ML to a 
part of the algorithm

• Graph neural networks can be an effective tool for learning 
sparse linear systems


