Learning Algebraic Multigrid
using Graph Neural Networks

llay Luz, Meirav Galun, Haggai Maron,
Ronen Basri, Irad Yavneh

~
i Bgashiaigli'a M TECHNION
P&l WEIZMANN INSTITUTE OF SCIENCE israal Inatitute

nVIDIA of Technology

Goal: Large scale linear systems

* Solve Ax = b
* A is huge, need O(n) solution!
* Some applications:

. L ot sy 02u 02
* Discretization of PDEs ., P = f(x,y)

* Sparse graph analysis T

¥ Ay v ‘
% S

Efficient linear solvers

* Decades of research on efficient iterative solvers for large-
scale systems

* We focus on Algebraic Multigrid (AMG) solvers
* Can we use machine learning to improve AMG solvers?

* Follow-up to Greenfeld et al. (2019) on Geometric Multigrid

What AMG does

 AMG works by successively
coarsening the system of
equations, and solving on multiple
scales

* Prolongation operator P that
creates the hierarchy

* We want to learn a mapping Pg(A4)
with fast convergence

Learning P

* Unsupervised loss function over distribution D:
m@in Esop p (M(A, Py (A)))

°p (M(A, Py (A))) measures the convergence factor of the solver

* Py(A) is a NN mapping system A to prolongation operator P

Graph neural network

e Sparse matrices can be represented as graphs — we use a Graph
Neural Network as the mapping Py(A)

27 —05 =05 0 —1.7 0 0 G
—05 77 —49 —0.6 0 0 —1.7\
—05 —49 6.2 0 0 —08 0

0 —0.6 0 29 —0.6 0 —1.7 <:> G
—1.7 0 0 —06 131 —10.8 0

0 0 —0.8 0 -108 116 0

0 —1.7 0 —1.7 0 0 3.4

Benefits of our approach

* Unsupervised training— rely on algebraic properties
* Generalization —learn general rules for wide class of problems

* Efficient training — Fourier analysis reduces computational
burden

asymptotic convergence factor

Sample result; lower is better, ours is lower!

- @ V-cycle CAMG /. F|n|te Element PDE

0.51 —@— V-cycle our model i
-®- W-cycle CAMG
—8— W-cycle our model

1K 2K 4K 8K 16K 32K 65K 131K 262K 400K
number of variables

Qutline

* Overview of AMG

* Learning objective

* Graph neural network

e Results

1t ingredient of AMG: Relaxation

* System of equations: a;1x; + ajpxo + -+ ajn Xy, = b;

1
* Rearrange: x; = p” (bi — i aijxj)

(0)

i

e Start with an initial guess x

| 1
* [terate until convergence: xl-(kﬂ) = o (bi — Zjii aijx(k))

Relaxation smooths the error

* Since relaxation is a local procedure, its effect is to smooth
out the error

\‘E{}“b 3 = > \"-\",ﬁ: %
'\-;\. ‘;)’ ’-:.“y‘

‘é-
t

* How to accelerate relaxation by dealing with low-frequency
errors?

2% ingredient of AMG: Coarsening

* Smooth error, and then coarsen

gl = w
v A a Relax @ Coarsen

* Error is no longer smooth on coarse grid; relaxation is fast
again!

Putting it all together

Relaxation

‘ (smoothing) ‘ ‘

L | ol = -
a &
v . - Smaller Error on original problem
Error on original problem

Restriction /‘ { Prolongation

L 3

Error approximated on
coarsened problem

Learning objective

Prolongation operator

* Focus of AMG is prolongation operator P for defining scales
and moving between them

* P needs to be sparse for efficiency, but also approximate well
smooth errors

i &

Learning P

e Quality can be quantified by estimating by how much the
error is reduced each iteration:

e et = M (4, P)e™

« M(4,P) = S(I — P[PTAP]~1PTA)S

» Asymptotically: |[e ®* V|| = p(M)]|e ™|

* Spectral radius: p(M) = max{|A4|, ..., |1,]}

* Qur learning objective:

m@in Ejpp (M(A; Pg (A)))

Graph neural network

Representing Pg
 Sparse matrix A € R™*™ to sparse matrix P € R"*"c
* Mapping should be efficient

* Matrices can be represented as graphs with edge weights

Representing Pg

2.7 -0.5 —0.5 0 -1.7 0 0
-0.5 7.7 -49 —-06 0 0 —-1.7
-05 —49 6.2 0 0 —0.8 0

0 -0.6 0 2.9 -0.6 0 —-1.7
-1.7 0 0 -0.6 131 —-10.8 0

0 0 —-0.8 0 —10.8 11.6 0

0 -1.7 0 -1.7 0 0 3.4

Sparsity
pattern

0 1 0
0 0.2 0.8
0 0 1
0 1 0

Output P

GNN architecture

* Message Passing architectures can handle any graph, and
have O(n) runtime S,

®

* Graph Nets framework from Battaglia et al. (2018) generalize
many MP variants, handle edge features

Results

Spectral clustering

* Bottleneck is an iterative eigenvector algorithm
that uses a linear solver

* Evaluate number of iterations required to reach
convergence

* Train network on dataset of small 2D clusters,
test on various 2D and 3D distributions

Conclusion

* Algebraic Multigrid is an effective O(n) solver for a wide class of linear
systems Ax = b

* Main challenge in AMG is constructing prolongation operator P, which
controls how information is passed between grids

* We use an 0(n), edge-based GNN to learn a mapping P4(A), without
supervision

* GNN generalizes to larger problems, with different distributions of
sparsity pattern and elements

Take home messages

* In a well-developed field, might make sense to apply ML to a
part of the algorithm

* Graph neural networks can be an effective tool for learning
sparse linear systems

