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Motivation
Large data
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Running time of any data analysis algorithm depends on datasize.

Courtesy: Google images



Coreset
Given a data set A and an algorithm M, a reduced set C is called a coreset if one 

can efficiently reduce from A to C such that M(C) ⋍ M(A)
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Given an n x d matrix A, an m x d matrix C is an ε-coreset for l2 subspace 
embedding if ∀x, 

(1-ε)||Ax||2 ≤ ||Cx||2 ≤ (1+ε)||Ax||2



Tensor contraction is one of the most important operation in tensor factorization.

Tensors
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Tensor factorization used to learn latent variables, neural networks parameters etc.

Anandkumar, Animashree, et al. "Tensor decompositions for learning latent variable models." Journal of Machine Learning Research 15 (2014): 
2773-2832.
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Problem Statement
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Note: With following cost function which is similar but not the same, the set C is 
also an ε-coreset for lp subspace embedding.

Given A, set of n vectors each in Rd, coming in streaming fashion, is there an 
efficient way of choosing a set of m vector in C such that it is an ε-coreset for 
p-order tensor contraction, for integer p ≥ 2 and ∀x ∊ Q, where Q is a 
k-dimensional subspace.



Our Contribution
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- We show two main modules LineFilter and KernelFilter, based on which we 
propose four streaming algorithms. which matches or beats the current state of the 
art in terms of sampling complexity, update time and working space.

- LineFilter: Online algorithm, for every incoming vectors it decides which one to 
sample. The expected sample size is õ(n1-2/pdk).

- KernelFilter: Online algorithm for very incoming vector first it Kernelizes 
to a higher dimension vector. Then it decides whether to sample the 
vector or not. It returns expected sample size of õ(dp/2k) for even p and õ
(n1/(p+1)dp/2k) for odd p. 

- At p = 2, our online row sampling method ensures a relative error 
approximation.



Importance Sampling
Sensitivity score for ith vector,
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A set of sub-sampled vectors form A based on ẽi solves our problem.

The sample size depends on sum of these scores.

Feldman, Dan, and Michael Langberg. "A unified framework for approximating and clustering data." Proceedings of the forty-third annual ACM 
symposium on Theory of computing. 2011.



LineFilter
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Here ẽi = min{1,r·np/2-1||ui||
p} and 
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LineFilter Result
To ensure, ∀x 𝛜 Q, which is a k-dimensional subspace

                                        and

Update time: O(d2)

Working Space: O(d2)

Coreset Size: õ(n1-2/pdkε-2)
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KernelFilter (even p)
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KernelFilter (even p)
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Here ẽi = min{1,r·||ui||

2} and
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KernelFilter (odd p)
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Here ẽi = min{1,r·||ui||
2p/(p+1)} and 

ai bi



KernelFilter Result
To ensure, ∀x 𝛜 Q, which is a k-dimensional subspace

                                        and

Update time: O(dp+1)

Working Space: O(dp+1)

Coreset Size: even p - õ(dp/2kε-2) and odd p - õ(n1/(p+1)dp/2kε-2)
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LineFilter + KernelFilter
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LineFilter+KernelFilter Result
To ensure, ∀x 𝛜 Q, which is a k-dimensional subspace

                                        and

Amortized Update time: O(d2)

Working Space: O(dp+1)

Coreset Size: even p - õ(dp/2kε-2) and odd p - õ(n(p-2)/p(p+1)dp/2+1/4k5/4ε-2)
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Existing Results

Comparison of Our Results
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Har-Peled, Sariel, and Soham Mazumdar. "On coresets for k-means and k-median clustering." Proceedings of the thirty-sixth annual 
ACM symposium on Theory of computing. 2004.

Our Results



Experimental Results on Topic Modeling
Data: 10K data points from 20Newsgroups dataset. 

Sampling method: Uniform, LinerFilter(2), LineFilter+KernelFilter

Output: Taking the best matching between empirical and estimated topics based 
on l1 distance and report the average l1 difference between them.
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Future Work
- Improve or remove the factor n for odd value p of our online algorithm.

- Improve running time of LineFilter to input sparsity time.

- Improve the update time for KernelFilter to make it practical for any value of d.
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