

Streaming Coresets for Tensor Factorization

Rachit Chhaya, Jayesh Choudhari, Anirban Dasgupta and **Supratim Shit**

IIT Gandhinagar, India

Outline

Motivation

Problem Statement

Main Algorithms

Compare Guarantee

Experiments

Motivation

Large data

Running time of any data analysis algorithm depends on datasize.

Courtesy: Google images

Coreset

Given a data set A and an algorithm M, a reduced set C is called a **coreset** if one can efficiently reduce from A to C such that $M(C) \cong M(A)$

Given an n x d matrix $\bf A$, an m x d matrix $\bf C$ is an ϵ -coreset for ℓ_2 subspace embedding if $\forall {\bf x}$,

$$(1-\varepsilon)||\mathbf{A}\mathbf{x}||_{2} \le ||\mathbf{C}\mathbf{x}||_{2} \le (1+\varepsilon)||\mathbf{A}\mathbf{x}||_{2}$$

Tensors

Tensor factorization used to learn latent variables, neural networks parameters etc.

Tensor contraction is one of the most important operation in tensor factorization.

$$\mathcal{T}(\mathbf{x}, \mathbf{x}, \dots, \mathbf{x}) = \sum_{\mathbf{a}_i^T \in \mathbf{A}} (\mathbf{a}_i^T \mathbf{x})^p$$

Anandkumar, Animashree, et al. "Tensor decompositions for learning latent variable models." *Journal of Machine Learning Research* 15 (2014): 2773-2832.

Problem Statement

Given \mathbf{A} , set of n vectors each in \mathbf{R}^{d} , coming in streaming fashion, is there an efficient way of choosing a set of m vector in \mathbf{C} such that it is an ϵ -coreset for p-order tensor contraction, for integer $\mathsf{p} \geq 2$ and $\forall \mathbf{x} \in \mathbf{Q}$, where \mathbf{Q} is a k-dimensional $\left|\sum_{i=1}^{n} (\tilde{\mathbf{a}}_{i}^{T}\mathbf{x})^{p} - \sum_{i=1}^{n} (\mathbf{a}_{i}^{T}\mathbf{x})^{p} \right| \leq \epsilon \cdot \sum_{i=1}^{n} |\mathbf{a}_{i}^{T}\mathbf{x}|^{p}$

 $\tilde{\mathbf{a}}_i \in \mathbf{C}$ $i \in [n]$ $i \in [n]$

Note: With following cost function which is *similar but not the same*, the set $\bf C$ is also an ϵ -coreset for $\ell_{\rm p}$ subspace embedding.

$$\Big|\sum_{\tilde{\mathbf{a}}_j \in \mathbf{C}} |\tilde{\mathbf{a}}_j^T \mathbf{x}|^p - \sum_{i \in [n]} |\mathbf{a}_i^T \mathbf{x}|^p \Big| \le \epsilon \cdot \sum_{i \in [n]} |\mathbf{a}_i^T \mathbf{x}|^p$$

Our Contribution

- We show two main modules **LineFilter** and **KernelFilter**, based on which we propose four streaming algorithms. which matches or beats the current state of the art in terms of sampling complexity, update time and working space.
- LineFilter: Online algorithm, for every incoming vectors it decides which one to sample. The expected sample size is $\tilde{o}(n^{1-2/p}dk)$.
- KernelFilter: Online algorithm for very incoming vector first it Kernelizes to a higher dimension vector. Then it decides whether to sample the vector or not. It returns expected sample size of $\tilde{o}(d^{p/2}k)$ for even p and $\tilde{o}(n^{1/(p+1)}d^{p/2}k)$ for odd p.
- At p = 2, our online row sampling method ensures a relative error approximation.

Importance Sampling

Sensitivity score for ith vector,

$$\tilde{s}_i = \sup_{\mathbf{x}} \frac{|\mathbf{a}_i^T \mathbf{x}|^p}{\sum_{j \le i} |\mathbf{a}_j^T \mathbf{x}|^p} \ \tilde{e}_i$$

A set of sub-sampled vectors form **A** based on $\tilde{\mathbf{e}}_i$ solves our problem.

The sample size depends on sum of these scores.

Feldman, Dan, and Michael Langberg. "A unified framework for approximating and clustering data." *Proceedings of the forty-third annual ACM symposium on Theory of computing*. 2011.

LineFilter

Sample based on $\mathbf{u_i}$, which is the last row of the orthonormal column basis of A,

Incoming vector

LineFilter

Coreset

Here
$$\tilde{\mathbf{e}}_{\mathbf{i}} = \min\{1, \mathbf{r} \cdot \mathbf{n}^{\mathbf{p}/2-1} ||\mathbf{u}_{\mathbf{i}}||^{\mathbf{p}}\}$$
 and $p_i = \frac{\tilde{e}_i}{\sum_{j \leq i} \tilde{e}_j}$

LineFilter Result

To ensure, $\forall x \in \mathbb{Q}$, which is a k-dimensional subspace

$$\big|\sum_{\tilde{\mathbf{a}}_j \in \mathbf{C}} (\tilde{\mathbf{a}}_j^T \mathbf{x})^p - \sum_{i \in [n]} (\mathbf{a}_i^T \mathbf{x})^p \big| \leq \epsilon \cdot \sum_{i \in [n]} |\mathbf{a}_i^T \mathbf{x}|^p \quad \text{and} \quad \Big|\sum_{\tilde{\mathbf{a}}_j \in \mathbf{C}} |\tilde{\mathbf{a}}_j^T \mathbf{x}|^p - \sum_{i \in [n]} |\mathbf{a}_i^T \mathbf{x}|^p \Big| \leq \epsilon \cdot \sum_{i \in [n]} |\mathbf{a}_i^T \mathbf{x}|^p$$

<u>Update time</u>: $O(d^2)$

Working Space: O(d²)

<u>Coreset Size</u>: $\tilde{O}(n^{1-2/p}dk\epsilon^{-2})$

KernelFilter (even *p*)

$$b_i = \text{vec}(\mathbf{a}_i \otimes^{p/2})$$

$$\tilde{s}_i = \sup_{\mathbf{x}} \frac{|\mathbf{a}_i^T \mathbf{x}|^p}{\sum_{j \le i} |\mathbf{a}_j^T \mathbf{x}|^p} \le \sup_{\mathbf{y}} \frac{|\mathbf{b}_i^T \mathbf{y}|^2}{\sum_{j \le i} |\mathbf{b}_j^T \mathbf{y}|^2}$$

KernelFilter (even *p*)

 $b_i = \operatorname{vec}(\mathbf{a}_i \otimes^{p/2})$

Incoming Vectors

Sample based on $\mathbf{u_i}$, which is the last row of the orthonormal column basis of $\mathbf{B_i}$

KernelFilter

Coreset

Here
$$\tilde{\mathbf{e}}_{\mathbf{i}}$$
 = min{1,r·|| $\mathbf{u}_{\mathbf{i}}$ ||²} and $p_i = \frac{\tilde{e}_i}{\sum_{j \leq i} \tilde{e}_j}$

KernelFilter (odd *p*)

$$egin{align*} egin{align*} egin{align*}$$

$$\tilde{s}_i = \sup_{\mathbf{x}} \frac{|\mathbf{a}_i^T \mathbf{x}|^p}{\sum_{j \le i} |\mathbf{a}_j^T \mathbf{x}|^p} \le \sup_{\mathbf{y}} \frac{|\mathbf{b}_i^T \mathbf{y}|^{2p/(p+1)}}{\sum_{j \le i} |\mathbf{b}_j^T \mathbf{y}|^{2p/(p+1)}}$$

Here
$$\tilde{\mathbf{e}}_{i} = \min\{1, \mathbf{r} \cdot ||\mathbf{u}_{i}||^{2\mathbf{p}/(\mathbf{p}+1)}\}$$
 and $p_{i} = \frac{\tilde{e}_{i}}{\sum_{j \leq i} \tilde{e}_{j}}$

KernelFilter Result

To ensure, $\forall x \in \mathbb{Q}$, which is a k-dimensional subspace

$$\big|\sum_{\tilde{\mathbf{a}}_j \in \mathbf{C}} (\tilde{\mathbf{a}}_j^T \mathbf{x})^p - \sum_{i \in [n]} (\mathbf{a}_i^T \mathbf{x})^p \big| \leq \epsilon \cdot \sum_{i \in [n]} |\mathbf{a}_i^T \mathbf{x}|^p \quad \text{and} \quad \Big|\sum_{\tilde{\mathbf{a}}_j \in \mathbf{C}} |\tilde{\mathbf{a}}_j^T \mathbf{x}|^p - \sum_{i \in [n]} |\mathbf{a}_i^T \mathbf{x}|^p \Big| \leq \epsilon \cdot \sum_{i \in [n]} |\mathbf{a}_i^T \mathbf{x}|^p$$

Update time: O(d^{p+1})

Working Space: O(dp+1)

<u>Coreset Size</u>: even p - $\tilde{O}(d^{p/2}k\epsilon^{-2})$ and odd p - $\tilde{O}(n^{1/(p+1)}d^{p/2}k\epsilon^{-2})$

LineFilter + KernelFilter

LineFilter+KernelFilter Result

To ensure, $\forall x \in \mathbb{Q}$, which is a k-dimensional subspace

$$\big|\sum_{\tilde{\mathbf{a}}_j \in \mathbf{C}} (\tilde{\mathbf{a}}_j^T \mathbf{x})^p - \sum_{i \in [n]} (\mathbf{a}_i^T \mathbf{x})^p \big| \leq \epsilon \cdot \sum_{i \in [n]} |\mathbf{a}_i^T \mathbf{x}|^p \quad \text{and} \quad \Big|\sum_{\tilde{\mathbf{a}}_j \in \mathbf{C}} |\tilde{\mathbf{a}}_j^T \mathbf{x}|^p - \sum_{i \in [n]} |\mathbf{a}_i^T \mathbf{x}|^p \Big| \leq \epsilon \cdot \sum_{i \in [n]} |\mathbf{a}_i^T \mathbf{x}|^p$$

Amortized Update time: O(d²)

Working Space: O(dp+1)

<u>Coreset Size</u>: even p - $\tilde{O}(d^{p/2}k\epsilon^{-2})$ and odd p - $\tilde{O}(n^{(p-2)/p(p+1)}d^{p/2+1/4}k^{5/4}\epsilon^{-2})$

Comparison of Our Results

Existing Results

ALGORITHM	Sample Size $ ilde{O}(\cdot)$	UPDATE TIME	Working space $ ilde{O}(\cdot)$
STREAMINGWCB (DASGUPTA ET AL., 2009)	$d^p k \epsilon^{-2}$	$d^5p\log d$	$d^p k \epsilon^{-2}$
STREAMINGLW (COHEN & PENG, 2015)	$d^{p/2}k\epsilon^{-5}$	$d^C p \log d$	$d^{p/2}k\epsilon^{-5}$
STREAMINGFC (CLARKSON ET AL., 2016)	$d^{7p/2}\epsilon^{-2}$	d	$d^{7p/2}\epsilon^{-2}$
STREAMING (DICKENS ET AL., 2018)	$n^{\gamma}d\epsilon^{-2}$	$n^{\gamma}d^{5}$	$n^{\gamma}d$

Our Results

ALGORITHM	Sample Size $ ilde{O}(\cdot)$	UPDATE TIME	Working space $ ilde{O}(\cdot)$
LINEFILTER	$n^{1-2/p}dk\epsilon^{-2}$	d^2	d^2
LineFilter+StreamingLW	$d^{p/2}k\epsilon^{-5}$	d^2 AMORTIZED	$d^{p/2}k\epsilon^{-5}$
KERNELFILTER (EVEN p)	$d^{p/2}k\epsilon^{-2}$	d^p	d^p
KERNELFILTER (ODD p)	$n^{1/(p+1)}d^{p/2}k\epsilon^{-2}$	d^{p+1}	d^{p+1}
LINEFILTER+KERNELFILTER (EVEN p)	$d^{p/2}k\epsilon^{-2}$	d^2 AMORTIZED	d^p
LINEFILTER+KERNELFILTER (ODD p)	$n^{(p-2)/(p^2+p)}d^{p/2+1/4}k^{5/4}\epsilon^{-2}$	d^2 AMORTIZED	d^{p+1}

Har-Peled, Sariel, and Soham Mazumdar. "On coresets for k-means and k-median clustering." *Proceedings of the thirty-sixth annual ACM symposium on Theory of computing*. 2004.

Experimental Results on Topic Modeling

Data: 10K data points from 20Newsgroups dataset.

<u>Sampling method</u>: Uniform, LinerFilter(2), LineFilter+KernelFilter

<u>Output</u>: Taking the best matching between empirical and estimated topics based on $\hat{\ell}_1$ distance and report the average ℓ_1 difference between them.

SAMPLE	Uniform	LINEFILTER(2)	LINEFILTER +KERNELFILTER
50	0.5725	0.6903	0.5299
100	0.5093	0.6385	0.4379
200	0.4687	0.5548	0.3231
500	0.3777	0.3992	0.2173
1000	0.2548	0.2318	0.1292

Future Work

- Improve or remove the factor n for odd value p of our online algorithm.

- Improve running time of LineFilter to input sparsity time.

- Improve the update time for KernelFilter to make it practical for any value of d.

References

Anandkumar, Animashree, et al. "Tensor decompositions for learning latent variable models." Journal of Machine Learning Research 15 (2014): 2773-2832.

Clarkson, Kenneth L., et al. "The fast cauchy transform and faster robust linear regression." SIAM Journal on Computing 45.3 (2016): 763-810.

Cohen, Michael B., Cameron Musco, and Jakub Pachocki. "Online Row Sampling." *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques* (2016).

Cohen, Michael B., and Richard Peng. "Lp row sampling by lewis weights." *Proceedings of the forty-seventh annual ACM symposium on Theory of computing*. 2015.

Cormode, Graham, Charlie Dickens, and David P. Woodruff. "Leveraging Well-Conditioned Bases: Streaming\& Distributed Summaries in Minkowski \$ p \$-Norms." *arXiv preprint arXiv:1807.02571* (2018).

References

Dasgupta, Anirban, et al. "Sampling algorithms and coresets for \ell_p regression." SIAM Journal on Computing 38.5 (2009): 2060-2078.

Har-Peled, Sariel, and Soham Mazumdar. "On coresets for k-means and k-median clustering." *Proceedings of the thirty-sixth annual ACM symposium on Theory of computing*. 2004.

Feldman, Dan, and Michael Langberg. "A unified framework for approximating and clustering data." *Proceedings of the forty-third annual ACM symposium on Theory of computing*. 2011.

Woodruff, David P. "Sketching as a Tool for Numerical Linear Algebra." *Foundations and Trends*® *in Theoretical Computer Science* 10.1–2 (2014): 1-157.

Thank You