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Core massage

• What is the problem?

• What do we want to achieve?

• What do we achieve in this paper?
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What is the problem?

Sensitive data

Examples:
• medical data ,
• web search data, 
• social networks,
• Salary data
• Etc,

Analyst: wants to 
do statistical 
analysis of data 

How to answer to  queries while 
preserving privacy of data? 
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What do we want to achieve?

We need an algorithm such that:

• It returns almost a correct answer to a query

• It is efficient and fast
• Preserves privacy when we have sensitive data.
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What we achieve in this paper?(part 1)

• We consider a class of set function queries, namely submodular set functions

• We present an algorithm for submodular maximization and prove:
• It is computationally efficient,
• Outputs solutions close to an optimal solution
• Preserves privacy of dataset
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What we achieve in this paper?(part 2)

• Further, we consider a generalization of submodular functions, namely k-submodular functions.

• This allows to capture more problems.

• We present an algorithm for k-submodular maximization and prove:
• It is computationally efficient,
• Outputs solutions close to an optimal solution
• Preserves privacy of dataset
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Differential privacy: 
A rigorous notion of privacy

Dataset

Dataset 
without 
X’s data

analysis/
computation

analysis/
computation

99

100

How many people 
have diabetes ?

Analyst e.g., health 
insurance companyIndividual 

X
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Differential privacy:
A rigorous notion of privacy

Dataset

Dataset 
without 
X’s data

analysis/
computation

analysis/
computation 100 ± 𝜖

How many people 
have diabetes ?

Analyst e.g., health 
insurance company

add NOISE

100 ± 𝜖

Individual 
X 8



Differential privacy:
A rigorous notion of privacy

Dataset

Dataset 
without 
X’s data

analysis/
computation

analysis/
computation

output

output

“Difference” at 
most 𝜖

add NOISE

Intuitively, any one individual’s data should
NOT significantly change the outcome.
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Differential Privacy (definition)

• For 𝜖, 𝛿 ∈ 𝑅!, we say that a randomized computation M is 𝜖, 𝛿 -differentially 
private if 

1. for any neighboring datasets 𝐷 ∼ 𝐷′, and 
2. for any set of outcomes 𝑆 ⊆ range(M),

Pr[M(D) ∈ S] ≤ 𝑒" Pr[M(D’) ∈ S]+δ

Neighboring datasets: two datasets that differ in at most one record.
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Set function queries

Id gender diabetes …. asthma Class

1 F 0 …. 1 C1

2 M 1 …. 1 C1

3 F 0 …. 1 C1

4 M 1 …. 0 C1

5 F 0 …. 0 C1

6 NA 1 …. 0 C1

7 F 0 …. 1 C2

8 M 1 …. 1 C2

9 NA 0 ….. 1 C2

10 M 1 …. 1 C2

Set function 𝑓!: 2" → 𝑅
• Given dataset 𝐷, function 𝑓!(𝑆)

measures “values” of set S in dataset D
• 𝑓! {𝑔𝑒𝑛𝑑𝑒𝑟, 𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠} = 5
• 𝑓! {𝑎𝑠𝑡ℎ𝑚𝑎} = 7

Dataset 𝐷

Query: what are k most 
informative features ?

m features

Answer while preserving 
individual’s privacy?
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Submodular Function

• In words: the marginal contribution of any element 𝑒 to the value of the function 𝑓(𝑆) diminishes 
as the input set 𝑆 increases.

• Mathematically, a function 𝑓: 2# → 𝑅 is submodular if 
• for all 𝐴 ⊆ 𝐵 ⊆ 𝐸 , 
• and all elements 𝑒 ∈ 𝐸 ∖ 𝐵 we have   

𝑓 A ∪ {𝑒} − 𝑓(𝐴) ≥ 𝑓 𝐵 ∪ 𝑒 − 𝑓(𝐵)
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Problem

• Design a framework for differentially private submodular maximization under matroid constraint. 

• A pair 𝑀 = (𝐸, 𝐼) of a set 𝐸 and 𝐼 ⊆ 2# is called a matroid if
• ∅ ∈ 𝐼,
• 𝐴 ∈ 𝐼 for any 𝐴 ⊆ 𝐵 ∈ 𝐼,
• for any 𝐴, 𝐵 ∈ 𝐼 with 𝐴 < |𝐵|, there exists 𝑒 ∈ 𝐵 ∖ 𝐴 such that 𝐴 ∪ 𝑒 ∈ 𝐼.

• Our objective: argmax
$∈&

𝑓(𝑆)
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Examples of submodularity

• Feature selection
• Influence maximization
• Facility location
• Maximum coverage
• Data summarization

• Image summarization
• Document summarization
….  

Document Summary

This Photo by Unknown Author is licensed under CC BY-
NC 14
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Objective: find 𝑆 ⊆ 𝐸 in the 
matroid that maximizes

A toy example

Set 𝐸 : m resources

n agents

𝑟# 𝑟$ 𝑟%

Each agent has a private submodular function 𝐹&: 2" → 𝑅

𝐹# 𝐹$ 𝐹'

agent 1 agent 2 agent n

⋯

⋯

⋯

D
&(#

'

𝐹&(𝑆)
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Our contributions

non-private previous result (Mitrovic et al.,) our result

utility 1 −
1
𝑒 𝑂𝑃𝑇

1
2𝑂𝑃𝑇 − 𝑂(

Δ ⋅ 𝑟(𝑀) ⋅ ln(|𝐸|)
𝜖 ) 1 −

1
𝑒 𝑂𝑃𝑇 − 𝑂( 𝜖 +

Δ ⋅ 𝑟(𝑀) ⋅ ln(|𝐸|)
𝜖) )

privacy -- 𝜖. 𝑟(𝑀) 𝜖. 𝑟 𝑀 $

• 1 − #
*
𝑂𝑃𝑇 is the best possible approximation ratio unless P=NP.

• Our algorithm uses almost cubic number of function evaluations 𝑂(𝑟 𝑀 ⋅ 𝐸 $ ⋅ ln(+ ,
-
)).

• Our privacy factor is worse than the previous work since we deal with multilinear extension.
• Please see our paper for details and proofs
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Generalization of submodularity:
K-submodular functions

𝑓 𝑆 + 𝑓 𝑇 ≥ 𝑓 𝑆 ⊓ 𝑇 + 𝑓(𝑆 ⊔ 𝑇)

A function 𝑓: 𝑘 + 1 # → 𝑅! defined on 𝑘-tuples of pairwise disjoint subsets of 𝐸 is called k-submodular
if for all 𝑘-tuples 𝑆 = (𝑆', … , 𝑆() and 𝑇 = (𝑇', … , 𝑇() of pairwise disjoint subsets of 𝐸,

𝑆 ⊓ 𝑇 = ( 𝑆' ∩ 𝑇' , … , 𝑆( ∩ 𝑇( ) 

𝑆 ⊔ 𝑇 = ( 𝑆' ∪ 𝑇' ∖ R
)*'

𝑆) ∪ 𝑇) , … , 𝑆( ∪ 𝑇( ∖ R
)*(

𝑆) ∪ 𝑇) )

where we define
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A simpler definition: A monotone function is k-submodular if each orthant (fix the domain of each element to be 
{0, 𝑖} for some 𝑖 ∈ {1,2, … , 𝑘} ) is submodular.



Examples of k-submodularity
• Coupled feature selection
• Sensor placement with k kinds of measures 
• Influence maximization with k topics
• Variant of facility location 
• ….

(a) Example placement
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(b) Real link quality – node 41
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(c) GP link quality – node 41

0
10

20
30

40
50

0
10

20
30

40
0

0.1

0.2

0.3

0.4

Sensor
location

(d) Link quality var. - node 41

Figure 1: (a) Indoor deployment of 54 nodes and an example placement of six sensors (squares) and three relay nodes (diamonds);
(b) measured transmission link qualities for node 41; (c) GP fit of link quality for node 41 and (d) shows variance of this GP estimate.
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(a) Real temperature covari-
ances – node 41
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(b) GP temperature covari-
ances – node 41
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(c) GP prediction of tempera-
ture surface
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(d) Variance of GP temperature
surface

Figure 2: (a) Measured temperature covariance between node 41 and other nodes in the deployment; (b) predicted covariance using
non-stationary GP; (c) predicted temperatures for sensor readings taken at noon on February 28th 2004, and (d) shows the variance
of this prediction.

In this paper, we use the expected number of retransmissions as a
cost metric on the communication between two sensors. This cost
metric directly translates to the deployment lifetime of the wireless
sensor network. We propose to use the probabilistic framework of
Gaussian Processes not only to model the monitored phenomena,
but also to predict communication costs.
Balancing informativeness of sensor placements with the need to
communicate efficiently can be formalized as a novel discrete op-
timization problem; it generalizes several well-studied problems,
thus appearing to be a fundamental question in its own. We present
a novel algorithm for this placement problem in wireless sensor net-
works; the algorithm selects sensor placements achieving a speci-
fied amount of certainty, with approximately minimal communica-
tion cost. More specifically, our main contributions are:

• A unified method for learning a probabilistic model of the
underlying phenomenon and for the expected communica-
tion cost between any two locations from a small, short-
term initial deployment. These models, based on Gaussian
Processes, allow us to avoid strong assumptions previously
made in the literature.

• A novel and efficient algorithm for Sensor Placements at In-
formative and cost-Effective Locations (pSPIEL). Exploiting
the concept of submodularity, this algorithm is guaranteed to
provide near-optimal placements for this hard problem.

• A complete solution for collecting data, learning models, op-
timizing and analyzing sensor placements, realized on Tmote
Sky motes, which combines all our proposed methods.

• Extensive evaluations of our proposed methods on temper-
ature and light prediction tasks, using data from real-world
sensor network deployments, as well as on a precipitation
prediction task in the Pacific Northwest.

2. PROBLEM STATEMENT
In this section, we briefly introduce the two fundamental quantities

involved in optimizing sensor placements. A sensor placement is
a finite subset of locations A from a ground set V . Any possible
placement is assigned a sensing quality F (A) � 0, and a com-
munication cost c(A) � 0, where the functions F and c will be
defined presently. We will use a temperature prediction task as a
running example: In this example, our goal is to deploy a network
of wireless sensors in a building in order to monitor the temperature
field, e.g., to actuate the air conditioning or heating system. Here,
the sensing quality refers to our temperature prediction accuracy,
and the communication cost depends on how efficiently the sensors
communicate with each other. More generally, we investigate the
problem of solving optimization problems of the form

min
A✓V

c(A) subject to F (A) � Q, (1)

for some quota Q > 0, which denotes the required amount of cer-
tainty achieved by any sensor placement. This optimization prob-
lem aims at finding the minimum cost placement that provides a
specified amount of certainty Q, and is called the covering prob-
lem. We also address the dual problem of solving

max
A✓V

F (A) subject to c(A)  B, (2)

for some budget B > 0. This optimization problem aims at finding
the most informative placement subject to a budget on the commu-
nication cost, and is called themaximization problem. In this paper,
we present efficient approximation algorithms for both the covering
and maximization problems.

2.1 What is sensing quality?
In order to quantify how informative a sensor placement is, we have
to establish a notion of uncertainty. We associate a random variable
Xs 2 XV with each location s 2 V of interest; for a subsetA ✓ V ,
let XA denote the set of random variables associated with the lo-
cations A. In our temperature measurement example, V ⇢ R2 de-
scribes the subset of coordinates in the building where sensors can

Picture from: Near-optimal Sensor Placements :
Maximizing Information while Minimizing Communication Cost. 
A. Krause, A. Gupta, C. Guestrin, J. Kleinberg

Singh, Guillory, Bilmes

Figure 2: Left: Only Small Sensors, Middle: Only Large Sensors Right: Both

6.1 Results

We have proposed two algorithms for maximizing a
simple or directed bisubmodular function: a slow,
coordinate-wise maximization, and a fast reduction
to submodular maximization. The reduction to sub-
modular maximization is always faster, and it can also
yield a result closer to the optimum in practice. In
Section 5 the comparison was between the same algo-
rithm on di↵erent ground sets (only small sensors, only
large sensors, both type of sensors). In this section,
the comparison is between two di↵erent algorithms on
the same instance of bisubmodular max.

To illustrate, we generate random instances of Gaus-
sian graphical models by randomly generating inverse
covariance matrices which respect the structure in Fig-
ure 3. There are twenty features, half connected to C1;
half connected to C2. A positive correlation is fixed
in the potential on (C1, C2). All other parameters are
drawn from U [�0.5, 0.5], with a rejection test to ensure
that the resulting matrix is positive semi-definite.

Figure 4 compares the quality of the approximation
produced by the two algorithms. The y-axis is scaled
so that performance is measured as a percent of the
unconstrained maximum of f(A,B). The standard
error bars reflect variation due to averaging results
across randomly generated Gaussian graphical models.
The faster reduction based algorithm achieves a result
closer to the optimum,

Note that the fast algorithm is approximately optimal
while the slower coordinate-wise algorithm is likely not.
This is because the coordinate-wise algorithm has only
been shown approximately optimal when maximizing
over 22V while here we maximize over 3V

7 Related Work

Other related work has considered sensor placement
problems involving more than one type of sensor
[11, 8, 3, 19, 21]. However, the majority of this work
doesn’t make a connection to submodular function max-
imization. Note that Fusco and Gupta [8] even derive

Figure 4: Coupled Feature Selection, comparison of the
approximation quality of the fast reduction algorithm
(red) vs. the slow coordinate-wise optimization (blue)
across all budgets k. Error bars cover 2-std errors.

approximation guarantees for a greedy algorithm with-
out connecting the problem to submodularity. Leskovec
et al. [19] and Mutlu et al. [21] do make this connection;
these authors pose the problem as a submodular max-
imization problem with a knapsack constraint. The
knapsack constraint allows for di↵erent sensors to have
di↵erent costs. Our work is distinct from this previ-
ous work, however, in that we pose our problems as
optimization problems over two argument set functions
(specifically bisubmodular set functions).

Other work has also considered applications of sub-
modular maximization subject to partition matroid
constraints [9, 17]. We note that Golovin et al. [9] in
particular considers maximization algorithms which
only evaulate f(S) within the constraint set. However,
this algorithm still requires that f is submodular ev-
erywhere (i.e. that you can reason about the value of
f(S) outside of the constraint set).

8 Conclusions

We believe that bisubmodularity is theoretically inter-
esting, and potentially, a broadly useful approach to
generalizing value-of-information problems. We have
derived the first e�cient algorithms for a wide range
of bisubmodular maximizations—a requisite step in
promulgating this class of problems in the machine
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Figure 1: Layouts For Sensor Placement Experiments

Table 1: Percent Coverage (Relative to Best Method)

Problem Small Sensors Large Sensors Both
1 / 15 89.27 82.52 100.00
1 / 30 97.35 96.29 100.00
2 / 15 91.20 86.92 100.00
2 / 30 95.91 88.07 100.00

as subroutines (using only large sensors is one possible
allocation of the budget) and is therefore always at
least as good as the other two methods. Figure 2 shows
the results for layout 1 and a budget of 15. Sensor
locations are shown in red, and covered area is shown
in blue. Here the best placement of sensors uses small
sensors to cover the small rooms and narrow hallways
of the environment and large sensors for the larger
rooms. The two type sensor method seems to perform
significantly better in situations like this.

The di↵erences in performance between the three ap-
proaches is necessarily dependent on the floor layout,
the budget, and the relative cost/coverage of the sensor
types. There are layouts where the value of using both
sensors is less dramatic, or non-existent.

6 Coupled Feature Selection

We are given a Gaussian graphical model, depicted in
Figure 3, with two variables to predict: C1, C2. Given
a set of features V , the goal is to select and partition
the features into two sets, A and B, such that C1 is
predicted using only features in A; and C2 is predicted
using only features in B. Communication constraints
preclude transmitting features between nodes C1 and
C2. However, local predictions (the value of C1 and
C2) can be transmitted between nodes.

If we ignore the correlation between C1 and C2, then
one criterion for feature selection is mutual informa-
tion, which is submodular under the Näıve Bayes model:
I(A;C1) = H(A)�

P
i H(Ai |C1). To exploit the cor-

relation between tasks, we use the mutual information

C1 C2

A1

Ak1

B1

. . .

. . .

Bk2

Figure 3: Coupled Feature Selection model.

of the underlying Gaussian graphical model:

f(A,B) = I(A,B;C) = H(A,B)�H(A,B|C)

= H(A,B)�
X

i

H(Ai|C1)�
X

j

H(Bj |C2),

which we refer to as biset mutual information. Max-
imizing f is equivalent to choosing features for the
two tasks that are maximally informative about both
tasks. Using f as the coupled feature selection criterion
yields a bisubmodular function maximization under the
budget constraint |A|+ |B|  k.

Without assumptions on the form of f , the problem
is an instance of subset selection in a polytree di-
rected graphical model, which is known to be NPPP-
complete [14]. However, we can show that when f is
restricted to 3V it is directed bisubmodular, under a
relatively broad class of models.

Theorem 4. Assume A [ B are mutually condition-
ally independent given C for any A ✓ V and B ✓ V .
f(A,B) = H(A,B)�H(A,B |C) is directed bisubmod-
ular, normalized, and monotone non-decreasing.

Proof. Evaluate f(;, ;) to establish normalization.
Monotonicity follows from the chain rule for mutual
information. Let R = A [ B and R0 = A0 [ B0

for (A,B), (A0, B0) 2 22V . I(R,R0;C) � I(R;C) =
I(R0;C |R) � 0. Consider f(A,B) = H(A,B) �
H(A,B |C). By the conditional independence assump-
tion, H(A,B |C) is modular in its arguments. H(S)
where S = A [ B is submodular, so H(S) is simple
bisubmodular. The di↵erence of a simple bisubmodular
function and a modular one is simple bisubmodular.
Restricting f(A,B) to 3V yields a directed bisubmod-
ular function, by Corollary 1.

Restricting A and B to be disjoint may make sense for
some feature selection problems. For example, if C1

and C2 predict the weather for two di↵erent geographic
regions and the features V correspond to di↵erent phys-
ical sensors, selecting a feature for both tasks would
correspond to placing the same sensor in two di↵erent
geographic regions, which is clearly impossible. A simi-
lar proof shows that when f is defined over 22V it is
also simple bisubmodular.
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A toy example

Objective: allocate at most  
B≤ 𝑚 ad slots to ad agencies 
so that it maximizes number 
of influenced users.

𝐺#: influence graph of 
ad agency 1.

𝐺$: influence graph of 
ad agency 2.

𝐺.: influence graph of 
ad agency k.

𝑣# 𝑣# 𝑣#

𝑣)
𝑣$

𝑣%

𝑣)
𝑣$

𝑣%

𝑣)
𝑣$

𝑣%

𝑢#
𝑢$
𝑢)

𝑢'

𝑢#
𝑢$
𝑢)

𝑢'

𝑢#
𝑢$
𝑢)

𝑢'

…

ad slots

users

⋮ ⋮
⋮

⋮
⋮ ⋮

users users

ad slots ad slots

Edges incident to a user 𝑢& in 
𝐺#, … , 𝐺. are sensitive data 
about 𝑢&.
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Our contributions

non-private previous result our result

utility 1
2𝑂𝑃𝑇

1
2𝑂𝑃𝑇 − 𝑂(

Δ ⋅ r M ⋅ ln(|𝐸|)
𝜖 )

privacy 𝜖. 𝑟(𝑀)𐄂

𐄂

𐄂

• Our algorithm is the first differentially private k-submodular maximization algorithm.  
• #

$
𝑂𝑃𝑇 is asymptotically tight assuming P≠NP.

• Our algorithm uses almost linear number of function evaluations i.e., 𝑂(𝑘 ⋅ 𝐸 ⋅ ln(𝑟 𝑀 )).
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Thanks!
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A function 𝑓: 2" → 𝑅 is submodular if 
• for all 𝐴 ⊆ 𝐵 ⊆ 𝐸 , 
• and all elements 𝑒 ∈ 𝐸 ∖ 𝐵 we have  

𝑓 A ∪ {𝑒} − 𝑓(𝐴) ≥ 𝑓 𝐵 ∪ 𝑒 − 𝑓(𝐵)

Definition of submodular function

• Viral marketing
• Information gathering
• Feature selection for classification
• Influence maximization in social network
• Document summarization…

Applications

We need an optimization method such that
• It returns almost an optimal solution
• It is efficient and fast
• Preserves individuals’ privacy when we have sensitive 

data: medical data ,web search data, social networks

What is our objective?

A rigorous notion of privacy that allows statistical analysis 
of sensitive data while providing strong privacy guarantees. 

Differential privacy

We present a differentially private algorithm for 
submodular maximization and:
• Prove that our algorithm returns a solution with quality 

at least
1 − #

*
𝑂𝑃𝑇 + 𝑠𝑚𝑎𝑙𝑙 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟

• Prove that our algorithm preserve privacy
• Improve the number of function evaluations via a 

sampling technique while still preserving privacy

Result 1

We present the first differentially private algorithm for k-
submodular maximization and:
• Prove that our algorithm returns a solution with quality 

at least
#
$
𝑂𝑃𝑇 + 𝑠𝑚𝑎𝑙𝑙 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟

• Prove our algorithm preserve privacy
• Reduce number of function evaluations to almost linear 

by a sampling technique while preserving privacy

Result 2 (generalization of submodularity)


