
Manifold Identification for Ultimately Communication-Efficient
Distributed Optimization

Yu-Sheng Li

Joint work with Wei-Lin Chiang (NTU) and Ching-pei Lee (NUS)

Outline

Overview

Empirical Risk Minimization

The Proposed Algorithm

Experiments

Distributed Machine Learning

1Originally by Jeff Dean in 2010, updated by Colin Scott at
https://colin-scott.github.io/personal_website/research/interactive_latency.html

1

Read 1 MB sequentially from memory 3 µs

Read 1 MB sequentially from network 22 µs

Read 1 MB sequentially from disk (SSD) 49 µs

Round trip in the same datacenter 500 µs

(Latency Numbers Every Programmer Should Know.1)

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Distributed Machine Learning

1Originally by Jeff Dean in 2010, updated by Colin Scott at
https://colin-scott.github.io/personal_website/research/interactive_latency.html

1

Read 1 MB sequentially from memory 3 µs

Read 1 MB sequentially from network 22 µs

Read 1 MB sequentially from disk (SSD) 49 µs

Round trip in the same datacenter 500 µs

(Latency Numbers Every Programmer Should Know.1)

I Inter-machine communication may be more time-consuming than local computations within
a machine

Comm. cost = (# Comm. rounds)× (Bytes communicated per round)

https://colin-scott.github.io/personal_website/research/interactive_latency.html

Sparsity-inducing Regularization

I To avoid overfitting and to force some desired structure of the solution, usually a
sparsity-inducing regularizer is introduced

I Example: `2- vs. `1-regularized logistic regression on news20

Relative reg. strength Sparsity of solution Test accuracy

`2-regularized
20 1,355,191 (100%) 99.7449%
210 1,355,191 (100%) 97.0044%

`1-regularized
20 67,071 (4.95%) 99.7499%
22 42,020 (3.10%) 99.7499%
24 14,524 (1.07%) 99.7449%
26 5,432 (0.40%) 99.6749%
28 1,472 (0.11%) 97.3495%
210 546 (0.04%) 92.8936%

2

Sparsity-inducing Regularization

I To avoid overfitting and to force some desired structure of the solution, usually a
sparsity-inducing regularizer is introduced

I Example: `2- vs. `1-regularized logistic regression on news20

Relative reg. strength Sparsity of solution Test accuracy

`2-regularized
20 1,355,191 (100%) 99.7449%
210 1,355,191 (100%) 97.0044%

`1-regularized
20 67,071 (4.95%) 99.7499%
22 42,020 (3.10%) 99.7499%
24 14,524 (1.07%) 99.7449%
26 5,432 (0.40%) 99.6749%
28 1,472 (0.11%) 97.3495%
210 546 (0.04%) 92.8936%

2

Sparsity-inducing Regularization

I To avoid overfitting and to force some desired structure of the solution, usually a
sparsity-inducing regularizer is introduced

I Example: `2- vs. `1-regularized logistic regression on news20

Relative reg. strength Sparsity of solution Test accuracy

`2-regularized
20 1,355,191 (100%) 99.7449%
210 1,355,191 (100%) 97.0044%

`1-regularized
20 67,071 (4.95%) 99.7499%
22 42,020 (3.10%) 99.7499%
24 14,524 (1.07%) 99.7449%
26 5,432 (0.40%) 99.6749%
28 1,472 (0.11%) 97.3495%
210 546 (0.04%) 92.8936%

2

Our contributions

Recall:

Comm. cost = (# Comm. rounds)× (Bytes communicated per round)

I Focusing on the small subproblem
⇒ fewer bytes to communicate

I Acceleration by smooth optimization in the correct manifold
⇒ fewer rounds of communication

3

Our contributions

Recall:

Comm. cost = (# Comm. rounds)× (Bytes communicated per round)

I Focusing on the small subproblem
⇒ fewer bytes to communicate

I Acceleration by smooth optimization in the correct manifold
⇒ fewer rounds of communication

3

Our contributions

Recall:

Comm. cost = (# Comm. rounds)× (Bytes communicated per round)

I Focusing on the small subproblem
⇒ fewer bytes to communicate

I Acceleration by smooth optimization in the correct manifold
⇒ fewer rounds of communication

3

Results (ours: MADPQN)

y-axis: relative distance to the optimal value (log-scaled)
x-axis: communication costs (upper), training time (lower)

news20 epsilon webspam

0 10 20
Communication (d bytes)

10 13

10 10

10 7

10 4

10 1 OWLQN
L-COMM
DPLBFGS
MADPQN

0 20 40 60
Training Time (seconds)

10 13

10 10

10 7

10 4

10 1 OWLQN
L-COMM
DPLBFGS
MADPQN

0 200 400
Communication (d bytes)

10 13

10 10

10 7

10 4

10 1 OWLQN
L-COMM
DPLBFGS
MADPQN

0 250 500 750 1000
Training Time (seconds)

10 13

10 10

10 7

10 4

10 1 OWLQN
L-COMM
DPLBFGS
MADPQN

0 5 10
Communication (d bytes)

10 8

10 5

10 2

101

OWLQN
L-COMM
DPLBFGS
MADPQN

0 1000 2000
Training Time (seconds)

10 8

10 5

10 2

101

OWLQN
L-COMM
DPLBFGS
MADPQN

4

Outline

Overview

Empirical Risk Minimization

The Proposed Algorithm

Experiments

5

Outline

Overview

Empirical Risk Minimization

The Proposed Algorithm

Experiments

Distributed Empirical Risk Minimization (ERM)

I Train a model by minimizing a function that measures the performance on training data

arg min
w∈Rd

f(w) :=

K∑
k=1

fk (w)

I There are K machines, and fk is exclusively available on machine k

I Synchronize w or ∇f(w) by communication: communication cost per iteration is O(d)

I How to reduce the O(d) cost?

6

Distributed Empirical Risk Minimization (ERM)

I Train a model by minimizing a function that measures the performance on training data

arg min
w∈Rd

f(w) :=

K∑
k=1

fk (w)

I There are K machines, and fk is exclusively available on machine k

I Synchronize w or ∇f(w) by communication: communication cost per iteration is O(d)

I How to reduce the O(d) cost?

6

Sparsity-inducing Regularizer

I If w is sparse throughout the training process, we only need to synchronize a shorter vector

I Regularized ERM:
min
w

f(w) +R(w)

I An ideal regularization term for forcing sparsity is the `0 norm:

‖w‖0 = number of nonzeros in w

I But this norm is not continuous and hence hard to optimize

I A good surrogate is the `1 norm ‖w‖1 =
∑d

i=1 |wi|

I Our algorithm works for other partly smooth R, e.g. group-LASSO

7

Sparsity-inducing Regularizer

I If w is sparse throughout the training process, we only need to synchronize a shorter vector

I Regularized ERM:
min
w

f(w) +R(w)

I An ideal regularization term for forcing sparsity is the `0 norm:

‖w‖0 = number of nonzeros in w

I But this norm is not continuous and hence hard to optimize

I A good surrogate is the `1 norm ‖w‖1 =
∑d

i=1 |wi|

I Our algorithm works for other partly smooth R, e.g. group-LASSO

7

Sparsity-inducing Regularizer

I If w is sparse throughout the training process, we only need to synchronize a shorter vector

I Regularized ERM:
min
w

f(w) +R(w)

I An ideal regularization term for forcing sparsity is the `0 norm:

‖w‖0 = number of nonzeros in w

I But this norm is not continuous and hence hard to optimize

I A good surrogate is the `1 norm ‖w‖1 =
∑d

i=1 |wi|

I Our algorithm works for other partly smooth R, e.g. group-LASSO

7

The Regularized Problem

I Now the problem becomes
min
w

f(w) + ‖w‖1,

which is harder to minimize than f(w) alone since ‖w‖1 is not differentiable

I As the gradient may not even exist, gradient descent or Newton method cannot be directly
applied

8

Proximal Quasi-Newton

I Proximal gradient is a simple algorithm that solves

min
w′
∇f(w)>(w′ −w) +

1

2α
‖w′ −w‖22 + ‖w′‖1,

where α is the step size for the current iteration

I Each calculation of ∇f requires one round of communication

I To reduce the amount of communication, we include some second-order information:

reducing iterations⇒ reducing rounds of communication

I Replace the term ‖w′ −w‖22/2α with (w′ −w)>H(w′ −w)/2 for some H ≈ ∇2f(w)

9

Proximal Quasi-Newton

I Proximal gradient is a simple algorithm that solves

min
w′
∇f(w)>(w′ −w) +

1

2α
‖w′ −w‖22 + ‖w′‖1,

where α is the step size for the current iteration

I Each calculation of ∇f requires one round of communication

I To reduce the amount of communication, we include some second-order information:

reducing iterations⇒ reducing rounds of communication

I Replace the term ‖w′ −w‖22/2α with (w′ −w)>H(w′ −w)/2 for some H ≈ ∇2f(w)

9

Outline

Overview

Empirical Risk Minimization

The Proposed Algorithm

Experiments

Utilizing Sparsity

I Even if we only update the nonzero entries of w, if we still compute the whole gradient
∇f(w), then the communication cost remains O(d)

I Guess: if wi = 0 at some iteration and it is likely to stay 0 at the next iteration, it remains 0
at the final solution

I Then we only solve the subproblem with respect to the coordinates that are likely to be
nonzero

I A progressive shrinking approach: once we guess wi = 0, we remove those coordinates from
our problem in future iterations

I So the number of nonzeros in w (i.e. ‖w‖0) gradually decreases

10

Utilizing Sparsity

I Even if we only update the nonzero entries of w, if we still compute the whole gradient
∇f(w), then the communication cost remains O(d)

I Guess: if wi = 0 at some iteration and it is likely to stay 0 at the next iteration, it remains 0
at the final solution

I Then we only solve the subproblem with respect to the coordinates that are likely to be
nonzero

I A progressive shrinking approach: once we guess wi = 0, we remove those coordinates from
our problem in future iterations

I So the number of nonzeros in w (i.e. ‖w‖0) gradually decreases

10

Utilizing Sparsity

I Even if we only update the nonzero entries of w, if we still compute the whole gradient
∇f(w), then the communication cost remains O(d)

I Guess: if wi = 0 at some iteration and it is likely to stay 0 at the next iteration, it remains 0
at the final solution

I Then we only solve the subproblem with respect to the coordinates that are likely to be
nonzero

I A progressive shrinking approach: once we guess wi = 0, we remove those coordinates from
our problem in future iterations

I So the number of nonzeros in w (i.e. ‖w‖0) gradually decreases

10

Convergence Issue

I What if our guess was wrong at some iteration?

I Need to double-check: when some stopping criterion is met, we restart with all coordinates

I Training is terminated only when our model can hardly be improved using all coordinates

11

Convergence Issue

I What if our guess was wrong at some iteration?

I Need to double-check: when some stopping criterion is met, we restart with all coordinates

I Training is terminated only when our model can hardly be improved using all coordinates

11

More Acceleration by Smooth Optimization

I |wi| becomes twice-differentiable when wi 6= 0

I If the coordinates where wi 6= 0 are fixed, the proximal approach is not needed anymore

I The problem can then be transformed into a smooth one for faster convergence

I When the nonzero pattern (manifold) does not change for some iterations, it is likely to be
the final pattern

I Example with d = 5:

{1, 2, 3, 4, 5}

→ {2, 3, 5} → {2, 5} → {2, 5} → {2, 5} accelerate−−−−−−→ · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → terminated

12

More Acceleration by Smooth Optimization

I |wi| becomes twice-differentiable when wi 6= 0

I If the coordinates where wi 6= 0 are fixed, the proximal approach is not needed anymore

I The problem can then be transformed into a smooth one for faster convergence

I When the nonzero pattern (manifold) does not change for some iterations, it is likely to be
the final pattern

I Example with d = 5:

{1, 2, 3, 4, 5}

→ {2, 3, 5} → {2, 5} → {2, 5} → {2, 5} accelerate−−−−−−→ · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → terminated

12

More Acceleration by Smooth Optimization

I |wi| becomes twice-differentiable when wi 6= 0

I If the coordinates where wi 6= 0 are fixed, the proximal approach is not needed anymore

I The problem can then be transformed into a smooth one for faster convergence

I When the nonzero pattern (manifold) does not change for some iterations, it is likely to be
the final pattern

I Example with d = 5:

{1, 2, 3, 4, 5}

→ {2, 3, 5} → {2, 5} → {2, 5} → {2, 5} accelerate−−−−−−→ · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → terminated

12

More Acceleration by Smooth Optimization

I |wi| becomes twice-differentiable when wi 6= 0

I If the coordinates where wi 6= 0 are fixed, the proximal approach is not needed anymore

I The problem can then be transformed into a smooth one for faster convergence

I When the nonzero pattern (manifold) does not change for some iterations, it is likely to be
the final pattern

I Example with d = 5:

{1, 2, 3, 4, 5} → {2, 3, 5}

→ {2, 5} → {2, 5} → {2, 5} accelerate−−−−−−→ · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → terminated

12

More Acceleration by Smooth Optimization

I |wi| becomes twice-differentiable when wi 6= 0

I If the coordinates where wi 6= 0 are fixed, the proximal approach is not needed anymore

I The problem can then be transformed into a smooth one for faster convergence

I When the nonzero pattern (manifold) does not change for some iterations, it is likely to be
the final pattern

I Example with d = 5:

{1, 2, 3, 4, 5} → {2, 3, 5} → {2, 5}

→ {2, 5} → {2, 5} accelerate−−−−−−→ · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → terminated

12

More Acceleration by Smooth Optimization

I |wi| becomes twice-differentiable when wi 6= 0

I If the coordinates where wi 6= 0 are fixed, the proximal approach is not needed anymore

I The problem can then be transformed into a smooth one for faster convergence

I When the nonzero pattern (manifold) does not change for some iterations, it is likely to be
the final pattern

I Example with d = 5:

{1, 2, 3, 4, 5} → {2, 3, 5} → {2, 5} → {2, 5}

→ {2, 5} accelerate−−−−−−→ · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → terminated

12

More Acceleration by Smooth Optimization

I |wi| becomes twice-differentiable when wi 6= 0

I If the coordinates where wi 6= 0 are fixed, the proximal approach is not needed anymore

I The problem can then be transformed into a smooth one for faster convergence

I When the nonzero pattern (manifold) does not change for some iterations, it is likely to be
the final pattern

I Example with d = 5:

{1, 2, 3, 4, 5} → {2, 3, 5} → {2, 5} → {2, 5} → {2, 5}

accelerate−−−−−−→ · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → terminated

12

More Acceleration by Smooth Optimization

I |wi| becomes twice-differentiable when wi 6= 0

I If the coordinates where wi 6= 0 are fixed, the proximal approach is not needed anymore

I The problem can then be transformed into a smooth one for faster convergence

I When the nonzero pattern (manifold) does not change for some iterations, it is likely to be
the final pattern

I Example with d = 5:

{1, 2, 3, 4, 5} → {2, 3, 5} → {2, 5} → {2, 5} → {2, 5} accelerate−−−−−−→ · · ·

restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → terminated

12

More Acceleration by Smooth Optimization

I |wi| becomes twice-differentiable when wi 6= 0

I If the coordinates where wi 6= 0 are fixed, the proximal approach is not needed anymore

I The problem can then be transformed into a smooth one for faster convergence

I When the nonzero pattern (manifold) does not change for some iterations, it is likely to be
the final pattern

I Example with d = 5:

{1, 2, 3, 4, 5} → {2, 3, 5} → {2, 5} → {2, 5} → {2, 5} accelerate−−−−−−→ · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·

restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → terminated

12

More Acceleration by Smooth Optimization

I |wi| becomes twice-differentiable when wi 6= 0

I If the coordinates where wi 6= 0 are fixed, the proximal approach is not needed anymore

I The problem can then be transformed into a smooth one for faster convergence

I When the nonzero pattern (manifold) does not change for some iterations, it is likely to be
the final pattern

I Example with d = 5:

{1, 2, 3, 4, 5} → {2, 3, 5} → {2, 5} → {2, 5} → {2, 5} accelerate−−−−−−→ · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·

restart−−−−→{1, 2, 3, 4, 5} → terminated

12

More Acceleration by Smooth Optimization

I |wi| becomes twice-differentiable when wi 6= 0

I If the coordinates where wi 6= 0 are fixed, the proximal approach is not needed anymore

I The problem can then be transformed into a smooth one for faster convergence

I When the nonzero pattern (manifold) does not change for some iterations, it is likely to be
the final pattern

I Example with d = 5:

{1, 2, 3, 4, 5} → {2, 3, 5} → {2, 5} → {2, 5} → {2, 5} accelerate−−−−−−→ · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → · · ·
restart−−−−→{1, 2, 3, 4, 5} → terminated

12

Theoretical Guarantees

Theorem

If a cluster point w∗ of {w after each restart} satisfies

0 ∈ relint (∇f(w∗) + ∂R(w∗)) ,

then the manifold of w∗ will be identified within finite restarts.

13

Outline

Overview

Empirical Risk Minimization

The Proposed Algorithm

Experiments

Settings

I We show the effectiveness of the proposed approach by `1-regularized logistic regression

min
w

n∑
i=1

log(1 + exp(−yix>i w)) + ‖w‖1,

where there are n instances with features xi ∈ Rd and labels yi ∈ {−1, 1}

I The instances are evenly split across K = 10 machines, connected by Intel MPI in a 1Gbps
network environment

14

Settings

I We show the effectiveness of the proposed approach by `1-regularized logistic regression

min
w

n∑
i=1

log(1 + exp(−yix>i w)) + ‖w‖1,

where there are n instances with features xi ∈ Rd and labels yi ∈ {−1, 1}

I The instances are evenly split across K = 10 machines, connected by Intel MPI in a 1Gbps
network environment

14

Data Statistics

Data set Instances (n) Features (d) Nonzeros in optimal w∗

news20 19,996 1,355,191 506
epsilon 400,000 2,000 1,463
webspam 350,000 16,609,143 793
url 2,396,130 3,231,961 25,399
avazu-site 25,832,830 999,962 11,858
KDD2010-b 19,264,097 29,890,096 2,005,632

15

Results

news20 webspam

0 25 50 75 100
Iteration

C
om

m
un

ic
at

io
n

ti
m

e

‖wMADPQN‖0

2

4

6

#
no

nz
er

o
of

w

×103

0 100 200 300
Iteration

C
om

m
un

ic
at

io
n

ti
m

e

‖wMADPQN‖0

0

2

4

#
no

nz
er

o
of

w

×104

I DPLBFGS:
a distributed proximal quasi-Newton method (Lee et al. 2019)

I Manifold-Aware Distributed Proximal Quasi-Newton (MADPQN):
DPLBFGS + manifold selection + further acceleration

16

Results

news20 webspam

0 50 100
Iteration

100

200

C
om

m
un

ic
at

io
n

ti
m

e
DPLBFGS

MADPQN

‖wMADPQN‖0

2

4

6

#
no

nz
er

o
of

w

×103

0 100 200 300
Iteration

100

200

300

C
om

m
un

ic
at

io
n

ti
m

e

DPLBFGS

MADPQN

‖wMADPQN‖0

0

2

4

#
no

nz
er

o
of

w

×104

I DPLBFGS:
a distributed proximal quasi-Newton method (Lee et al. 2019)

I Manifold-Aware Distributed Proximal Quasi-Newton (MADPQN):
DPLBFGS + manifold selection + further acceleration

16

Comparison with state of the art

I OWLQN (Andrew and Gao 2007):
an extension of a quasi-Newton method, LBFGS, which is the most commonly used
distributed method

I L-COMM (Chiang et al. 2018):
an extension of the common directions method (Wang et al. 2016)

I DPLBFGS (Lee et al. 2019):
a distributed proximal LBFGS method

I MADPQN:
Our proposed Manifold-Aware Distributed Proximal Quasi-Newton method

17

Results

y-axis: relative distance to the optimal value (log-scaled)
x-axis: communication costs (upper), training time (lower)

news20 epsilon webspam

0 10 20
Communication (d bytes)

10 13

10 10

10 7

10 4

10 1 OWLQN
L-COMM
DPLBFGS
MADPQN

0 20 40 60
Training Time (seconds)

10 13

10 10

10 7

10 4

10 1 OWLQN
L-COMM
DPLBFGS
MADPQN

0 200 400
Communication (d bytes)

10 13

10 10

10 7

10 4

10 1 OWLQN
L-COMM
DPLBFGS
MADPQN

0 250 500 750 1000
Training Time (seconds)

10 13

10 10

10 7

10 4

10 1 OWLQN
L-COMM
DPLBFGS
MADPQN

0 5 10
Communication (d bytes)

10 8

10 5

10 2

101

OWLQN
L-COMM
DPLBFGS
MADPQN

0 1000 2000
Training Time (seconds)

10 8

10 5

10 2

101

OWLQN
L-COMM
DPLBFGS
MADPQN

18

Results

y-axis: relative distance to the optimal value (log-scaled)
x-axis: communication costs (upper), training time (lower)

url avazu-site KDD2010-b

0 500 1000
Communication (d bytes)

10 3

10 1

101 OWLQN
L-COMM
DPLBFGS
MADPQN

0 5000 10000 15000
Training Time (seconds)

10 3

10 1

101 OWLQN
L-COMM
DPLBFGS
MADPQN

0 2000 4000 6000
Communication (d bytes)

10 12

10 9

10 6

10 3

100
OWLQN
L-COMM
DPLBFGS
MADPQN

0 5000 10000 15000
Training Time (seconds)

10 12

10 9

10 6

10 3

100
OWLQN
L-COMM
DPLBFGS
MADPQN

0 2500 5000 7500 10000
Communication (d bytes)

10 9

10 6

10 3

100 L-COMM
DPLBFGS
MADPQN

0 20000 40000 60000 80000
Training Time (seconds)

10 9

10 6

10 3

100 L-COMM
DPLBFGS
MADPQN

18

Conclusions

I Communication may be the bottleneck in distributed machine learning

I Communication cost can be reduced by utilizing the sparsity pattern throughout training

I Second-order information further improves convergence in later stage

I Theoretical support on manifold identification and superlinear convergence

I Source code to be released soon

19

	Overview
	Empirical Risk Minimization
	The Proposed Algorithm
	Experiments

