Manifold Identification for Ultimately Communication-Efficient Distributed Optimization

Yu-Sheng Li

Joint work with Wei-Lin Chiang (NTU) and Ching-pei Lee (NUS)

Outline

Overview

Empirical Risk Minimization

The Proposed Algorithm

Experiments

Distributed Machine Learning

Read 1 MB sequentially from memory	$3~\mu s$
Read 1 MB sequentially from network	22 μs
Read 1 MB sequentially from disk (SSD)	49 μ s
Round trip in the same datacenter	$500~\mu s$

(Latency Numbers Every Programmer Should Know. 1)

¹Originally by Jeff Dean in 2010, updated by Colin Scott at https://colin-scott.github.io/personal_website/research/interactive_latency.html

Distributed Machine Learning

Read 1 MB sequentially from memory	$3~\mu s$
Read 1 MB sequentially from network	22 μs
Read 1 MB sequentially from disk (SSD)	49 μ s
Round trip in the same datacenter	$500~\mu s$
	1

(Latency Numbers Every Programmer Should Know.¹)

► Inter-machine communication may be more time-consuming than local computations within a machine

 $\mathsf{Comm.}\ \mathsf{cost} = (\#\ \mathsf{Comm.}\ \mathsf{rounds}) \times (\mathsf{Bytes}\ \mathsf{communicated}\ \mathsf{per}\ \mathsf{round})$

¹Originally by Jeff Dean in 2010, updated by Colin Scott at https://colin-scott.github.io/personal_website/research/interactive_latency.html

Sparsity-inducing Regularization

► To avoid overfitting and to force some desired structure of the solution, usually a sparsity-inducing regularizer is introduced

Sparsity-inducing Regularization

- ► To avoid overfitting and to force some desired structure of the solution, usually a sparsity-inducing regularizer is introduced
- **Example:** ℓ_2 vs. ℓ_1 -regularized logistic regression on **news20**

Relative reg. strength	Sparsity of solution	Test accuracy
ℓ_2 -regularized		
2^0	1,355,191 (100%)	99.7449%
2^{10}	1,355,191 (100%)	97.0044%

Sparsity-inducing Regularization

- To avoid overfitting and to force some desired structure of the solution, usually a sparsity-inducing regularizer is introduced
- **Example:** ℓ_2 vs. ℓ_1 -regularized logistic regression on **news20**

Relative reg. strength	Sparsity of solution	Test accuracy
ℓ_2 -regularized		
2^0	1,355,191 (100%)	99.7449%
2^{10}	1,355,191 (100%)	97.0044%
ℓ_1 -regularized		
2^0	67,071 (4.95%)	99.7499%
2^2	42,020 (3.10%)	99.7499%
2^4	14,524 (1.07%)	99.7449%
2^6	5,432 (0.40%)	99.6749%
2^8	1,472 (0.11%)	97.3495%
2^{10}	546 (0.04%)	92.8936%

Our contributions

Recall:

Comm. $cost = (\# Comm. rounds) \times (Bytes communicated per round)$

Our contributions

Recall:

 $\mathsf{Comm.}\ \mathsf{cost} = (\#\ \mathsf{Comm.}\ \mathsf{rounds}) \times (\mathsf{Bytes}\ \mathsf{communicated}\ \mathsf{per}\ \mathsf{round})$

- Focusing on the small subproblem
 - \Rightarrow fewer bytes to communicate

Our contributions

Recall:

 $\mathsf{Comm.}\ \mathsf{cost} = (\#\ \mathsf{Comm.}\ \mathsf{rounds}) \times (\mathsf{Bytes}\ \mathsf{communicated}\ \mathsf{per}\ \mathsf{round})$

- Focusing on the small subproblem
 - \Rightarrow fewer bytes to communicate
- Acceleration by smooth optimization in the correct manifold
 - \Rightarrow fewer rounds of communication

Results (ours: MADPQN)

y-axis: relative distance to the optimal value (log-scaled) x-axis: communication costs (upper), training time (lower)

Outline

Overview

Empirical Risk Minimization

The Proposed Algorithm

 ${\sf Experiments}$

Outline

Overview

Empirical Risk Minimization

The Proposed Algorithm

Experiments

Distributed Empirical Risk Minimization (ERM)

▶ Train a model by minimizing a function that measures the performance on training data

$$rg\min_{oldsymbol{w} \in \mathbb{R}^d} \quad f(oldsymbol{w}) \coloneqq \sum_{k=1}^K f_k\left(oldsymbol{w}
ight)$$

ightharpoonup There are K machines, and f_k is exclusively available on machine k

Distributed Empirical Risk Minimization (ERM)

▶ Train a model by minimizing a function that measures the performance on training data

$$rg\min_{oldsymbol{w} \in \mathbb{R}^d} \quad f(oldsymbol{w}) \coloneqq \sum_{k=1}^K f_k\left(oldsymbol{w}
ight)$$

- lacktriangle There are K machines, and f_k is exclusively available on machine k
- lacktriangle Synchronize $m{w}$ or $abla f(m{w})$ by communication: communication cost per iteration is O(d)
- ► How to reduce the *O*(*d*) cost?

Sparsity-inducing Regularizer

- lacktriangleright If w is sparse throughout the training process, we only need to synchronize a shorter vector
- Regularized ERM:

$$\min_{\boldsymbol{w}} \quad f(\boldsymbol{w}) + R(\boldsymbol{w})$$

Sparsity-inducing Regularizer

- lacktriangle If w is sparse throughout the training process, we only need to synchronize a shorter vector
- Regularized ERM:

$$\min_{\boldsymbol{w}} \quad f(\boldsymbol{w}) + \frac{R(\boldsymbol{w})}{R(\boldsymbol{w})}$$

▶ An ideal regularization term for forcing sparsity is the ℓ_0 norm:

 $\|oldsymbol{w}\|_0 = \mathsf{number} \; \mathsf{of} \; \mathsf{nonzeros} \; \mathsf{in} \; oldsymbol{w}$

Sparsity-inducing Regularizer

- lacktriangleright If w is sparse throughout the training process, we only need to synchronize a shorter vector
- Regularized ERM:

$$\min_{\boldsymbol{w}} \quad f(\boldsymbol{w}) + \frac{R(\boldsymbol{w})}{R(\boldsymbol{w})}$$

▶ An ideal regularization term for forcing sparsity is the ℓ_0 norm:

$$\|oldsymbol{w}\|_0=$$
 number of nonzeros in $oldsymbol{w}$

- But this norm is not continuous and hence hard to optimize
- lacksquare A good surrogate is the ℓ_1 norm $\|oldsymbol{w}\|_1 = \sum_{i=1}^d |w_i|$
- ightharpoonup Our algorithm works for other partly smooth R, e.g. group-LASSO

The Regularized Problem

Now the problem becomes

$$\min_{\boldsymbol{w}} f(\boldsymbol{w}) + \|\boldsymbol{w}\|_1,$$

which is harder to minimize than f(w) alone since $||w||_1$ is not differentiable

► As the gradient may not even exist, gradient descent or Newton method cannot be directly applied

Proximal Quasi-Newton

Proximal gradient is a simple algorithm that solves

$$\min_{\boldsymbol{w}'} \nabla f(\boldsymbol{w})^{\top} (\boldsymbol{w}' - \boldsymbol{w}) + \frac{1}{2\alpha} \|\boldsymbol{w}' - \boldsymbol{w}\|_{2}^{2} + \|\boldsymbol{w}'\|_{1},$$

where α is the step size for the current iteration

lacktriangle Each calculation of ∇f requires one round of communication

Proximal Quasi-Newton

Proximal gradient is a simple algorithm that solves

$$\min_{\boldsymbol{w}'} \nabla f(\boldsymbol{w})^{\top} (\boldsymbol{w}' - \boldsymbol{w}) + \frac{1}{2\alpha} \|\boldsymbol{w}' - \boldsymbol{w}\|_{2}^{2} + \|\boldsymbol{w}'\|_{1},$$

where α is the step size for the current iteration

- lacktriangle Each calculation of abla f requires one round of communication
- To reduce the amount of communication, we include some second-order information:

reducing iterations \Rightarrow reducing rounds of communication

► Replace the term $\| {m w}' - {m w} \|_2^2 / 2 {m \alpha}$ with $({m w}' - {m w})^{\top} {m H} ({m w}' - {m w}) / 2$ for some $H \approx \nabla^2 f({m w})$

9

Outline

Overview

Empirical Risk Minimization

The Proposed Algorithm

Experiments

Utilizing Sparsity

Even if we only update the nonzero entries of w, if we still compute the whole gradient $\nabla f(w)$, then the communication cost remains O(d)

Utilizing Sparsity

- Even if we only update the nonzero entries of w, if we still compute the whole gradient $\nabla f(w)$, then the communication cost remains O(d)
- ▶ Guess: if $w_i = 0$ at some iteration and it is likely to stay 0 at the next iteration, it remains 0 at the final solution
- ► Then we only solve the subproblem with respect to the coordinates that are likely to be nonzero

Utilizing Sparsity

- Even if we only update the nonzero entries of w, if we still compute the whole gradient $\nabla f(w)$, then the communication cost remains O(d)
- ▶ Guess: if $w_i = 0$ at some iteration and it is likely to stay 0 at the next iteration, it remains 0 at the final solution
- ► Then we only solve the subproblem with respect to the coordinates that are likely to be nonzero
- A progressive shrinking approach: once we guess $w_i=0$, we remove those coordinates from our problem in future iterations
- lacktriangle So the number of nonzeros in $m{w}$ (i.e. $\|m{w}\|_0$) gradually decreases

Convergence Issue

▶ What if our guess was wrong at some iteration?

Convergence Issue

- ▶ What if our guess was wrong at some iteration?
- ▶ Need to double-check: when some stopping criterion is met, we restart with all coordinates
- Training is terminated only when our model can hardly be improved using all coordinates

- $ightharpoonup |w_i|$ becomes twice-differentiable when $w_i \neq 0$
- If the coordinates where $w_i \neq 0$ are fixed, the proximal approach is not needed anymore
- ▶ The problem can then be transformed into a smooth one for faster convergence

- $ightharpoonup |w_i|$ becomes twice-differentiable when $w_i \neq 0$
- lacktriangle If the coordinates where $w_i
 eq 0$ are fixed, the proximal approach is not needed anymore
- ▶ The problem can then be transformed into a smooth one for faster convergence
- ▶ When the nonzero pattern (manifold) does not change for some iterations, it is likely to be the final pattern

- $|w_i|$ becomes twice-differentiable when $w_i \neq 0$
- ▶ If the coordinates where $w_i \neq 0$ are fixed, the proximal approach is not needed anymore
- ▶ The problem can then be transformed into a smooth one for faster convergence
- ▶ When the nonzero pattern (manifold) does not change for some iterations, it is likely to be the final pattern
- Example with d = 5:

$$\{1, 2, 3, 4, 5\}$$

- $|w_i|$ becomes twice-differentiable when $w_i \neq 0$
- ▶ If the coordinates where $w_i \neq 0$ are fixed, the proximal approach is not needed anymore
- ▶ The problem can then be transformed into a smooth one for faster convergence
- ▶ When the nonzero pattern (manifold) does not change for some iterations, it is likely to be the final pattern
- Example with d = 5:

$$\{1, 2, 3, 4, 5\} \rightarrow \{2, 3, 5\}$$

- $|w_i|$ becomes twice-differentiable when $w_i \neq 0$
- ▶ If the coordinates where $w_i \neq 0$ are fixed, the proximal approach is not needed anymore
- ▶ The problem can then be transformed into a smooth one for faster convergence
- ▶ When the nonzero pattern (manifold) does not change for some iterations, it is likely to be the final pattern
- Example with d = 5:

$$\{1,2,3,4,5\} \to \{2,3,5\} \to \{2,5\}$$

- $|w_i|$ becomes twice-differentiable when $w_i \neq 0$
- ▶ If the coordinates where $w_i \neq 0$ are fixed, the proximal approach is not needed anymore
- ▶ The problem can then be transformed into a smooth one for faster convergence
- ▶ When the nonzero pattern (manifold) does not change for some iterations, it is likely to be the final pattern
- Example with d = 5:

$$\{1,2,3,4,5\} \to \{2,3,5\} \to \{2,5\} \to \{2,5\}$$

- $|w_i|$ becomes twice-differentiable when $w_i \neq 0$
- ▶ If the coordinates where $w_i \neq 0$ are fixed, the proximal approach is not needed anymore
- ▶ The problem can then be transformed into a smooth one for faster convergence
- ▶ When the nonzero pattern (manifold) does not change for some iterations, it is likely to be the final pattern
- Example with d = 5:

$$\{1,2,3,4,5\} \to \{2,3,5\} \to \{2,5\} \to \{2,5\} \to \{2,5\}$$

- $|w_i|$ becomes twice-differentiable when $w_i \neq 0$
- ▶ If the coordinates where $w_i \neq 0$ are fixed, the proximal approach is not needed anymore
- ▶ The problem can then be transformed into a smooth one for faster convergence
- ▶ When the nonzero pattern (manifold) does not change for some iterations, it is likely to be the final pattern
- Example with d = 5:

$$\{1,2,3,4,5\} \rightarrow \{2,3,5\} \rightarrow \{2,5\} \rightarrow \{2,5\} \rightarrow \{2,5\} \xrightarrow{\mathsf{accelerate}} \cdots$$

- $|w_i|$ becomes twice-differentiable when $w_i \neq 0$
- lacktriangle If the coordinates where $w_i
 eq 0$ are fixed, the proximal approach is not needed anymore
- ▶ The problem can then be transformed into a smooth one for faster convergence
- When the nonzero pattern (manifold) does not change for some iterations, it is likely to be the final pattern
- ightharpoonup Example with d=5:

$$\begin{array}{c} \{1,2,3,4,5\} \rightarrow \{2,3,5\} \rightarrow \{2,5\} \rightarrow \{2,5\} \xrightarrow{\mathsf{accelerate}} \cdots \\ \xrightarrow{\mathsf{restart}} \{1,2,3,4,5\} \rightarrow \cdots \end{array}$$

More Acceleration by Smooth Optimization

- $ightharpoonup |w_i|$ becomes twice-differentiable when $w_i \neq 0$
- lacktriangle If the coordinates where $w_i
 eq 0$ are fixed, the proximal approach is not needed anymore
- ▶ The problem can then be transformed into a smooth one for faster convergence
- When the nonzero pattern (manifold) does not change for some iterations, it is likely to be the final pattern
- Example with d = 5:

More Acceleration by Smooth Optimization

- $|w_i|$ becomes twice-differentiable when $w_i \neq 0$
- lacktriangle If the coordinates where $w_i
 eq 0$ are fixed, the proximal approach is not needed anymore
- ▶ The problem can then be transformed into a smooth one for faster convergence
- When the nonzero pattern (manifold) does not change for some iterations, it is likely to be the final pattern
- Example with d = 5:

Theoretical Guarantees

Theorem

If a cluster point w^* of $\{w \text{ after each restart}\}$ satisfies

$$\mathbf{0} \in \operatorname{relint} \left(\nabla f(\boldsymbol{w}^*) + \partial R(\boldsymbol{w}^*) \right),$$

then the manifold of w^* will be identified within finite restarts.

Outline

Overview

Empirical Risk Minimization

The Proposed Algorithm

Experiments

Settings

lacktriangle We show the effectiveness of the proposed approach by ℓ_1 -regularized logistic regression

$$\min_{\boldsymbol{w}} \quad \sum_{i=1}^{n} \log(1 + \exp(-y_i \boldsymbol{x}_i^{\top} \boldsymbol{w})) + \|\boldsymbol{w}\|_1,$$

where there are n instances with features $x_i \in \mathbb{R}^d$ and labels $y_i \in \{-1,1\}$

Settings

lacktriangle We show the effectiveness of the proposed approach by ℓ_1 -regularized logistic regression

$$\min_{\mathbf{w}} \quad \sum_{i=1}^{n} \log(1 + \exp(-y_i \mathbf{x}_i^{\top} \mathbf{w})) + \|\mathbf{w}\|_1,$$

where there are n instances with features $x_i \in \mathbb{R}^d$ and labels $y_i \in \{-1,1\}$

lacktriangle The instances are evenly split across K=10 machines, connected by Intel MPI in a 1Gbps network environment

Data Statistics

Data set	Instances (n)	Features (d)	Nonzeros in optimal $oldsymbol{w}^*$
news20	19,996	1,355,191	506
epsilon	400,000	2,000	1,463
webspam	350,000	16,609,143	793
url	2,396,130	3,231,961	25,399
avazu-site	25,832,830	999,962	11,858
KDD2010-b	19,264,097	29,890,096	2,005,632

- ▶ DPLBFGS: a distributed proximal quasi-Newton method (Lee et al. 2019)
- Manifold-Aware Distributed Proximal Quasi-Newton (MADPQN): DPLBFGS + manifold selection + further acceleration

Comparison with state of the art

- OWLQN (Andrew and Gao 2007): an extension of a quasi-Newton method, LBFGS, which is the most commonly used distributed method
- ► L-COMM (Chiang et al. 2018): an extension of the common directions method (Wang et al. 2016)
- ▶ DPLBFGS (Lee et al. 2019): a distributed proximal LBFGS method
- MADPQN: Our proposed Manifold-Aware Distributed Proximal Quasi-Newton method

y-axis: relative distance to the optimal value (log-scaled) x-axis: communication costs (upper), training time (lower)

y-axis: relative distance to the optimal value (log-scaled) x-axis: communication costs (upper), training time (lower)

Conclusions

- Communication may be the bottleneck in distributed machine learning
- Communication cost can be reduced by utilizing the sparsity pattern throughout training
- Second-order information further improves convergence in later stage
- Theoretical support on manifold identification and superlinear convergence
- Source code to be released soon