### Increasing Dataset Size even when Learning is Impossible



**Brian Axelrod** 



Shivam Garg

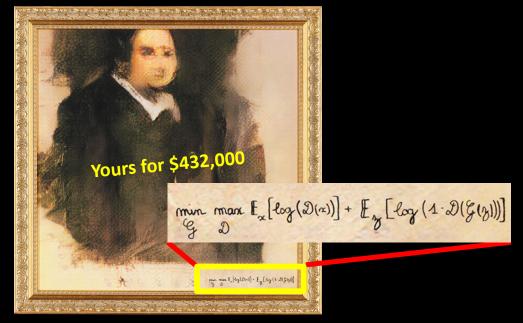


Vatsal Sharan



**Greg Valiant** 





What does it mean that a GAN made this image? (Does it mean that GANs "know" the distribution of renaissance portraits?)

# When can you make more data?

Could you generate new samples from a distribution, without even ``learning'' it?

# **New Problem: Sample Amplification**



Input: n i.i.d. samples from D

Output: m > n "samples"

Input: *m* samples, distribution *D* 

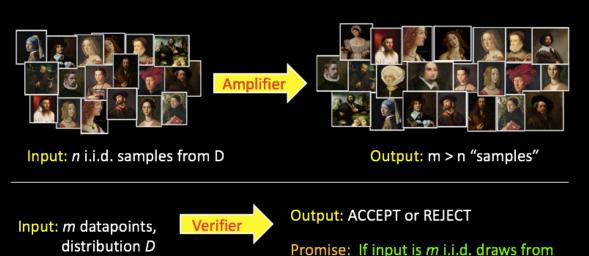


Output: ACCEPT or REJECT

Promise: If input is m i.i.d. draws from D, then w. prob >  $\frac{3}{4}$ , must ACCEPT.

Verifier: 1. Knows D 2. Is computationally unbounded 3. Does not know training set

Definition: A class of distributions C admits (n,m)-amplification, if there is an (n,m) Amplifer s.t. for all  $D \in C$ , any Verifier will ACCEPT with prob > 2/3.



Verifier: knows *D*, is computationally unbounded

D, then w. prob > ¾, must ACCEPT.

Definition: A class of distributions C admits (n,m)-amplification, if there is an (n,m) Amplifer s.t. for all  $D \in C$ , any Verifier will ACCEPT with prob > 2/3.

- Every class C admits (n,n)-amplification (why?)
- Verifier does not see Amplifier's n input samples. (Otherwise equivalent to learning)
- Up to constant factors, equivalent to asking whether Amplifier can output m samples, whose T.V. distance to m i.i.d. samples from D is small.

Definition: A class of distributions C admits (n,m)-amplification, if there is an (n,m) Amplifer s.t. for all  $D \in C$ , any Verifier will ACCEPT with prob > 2/3.

Connection to GANs:

Amplifier -> Generator, Verifier -> Discriminator? Not quite.. Similarities in how samples are used and evaluated.

# **RESULTS**

Thm 1: Let C be class of discrete distributions supported on  $\leq k$  elements.

(n, n + n/sqrt(k))-amplification is possible (and optimal, to constant factors)

- \* Nontrivial amplification possible as soon as n > sqrt(k).
- \* Learning to nontrivial accuracy requires  $n=\theta(k)$  samples
- \* Even with n >> k can never amplify by arbitrary amount.

Thm 2: Let C be class of Gaussians in d dimensions, with fixed covariance (e.g. "isotropic"), and **unknown** mean. (n, n + n/sqrt(d))-amplification is possible (and optimal, to constant factors)

- \* Nontrivial amplification possible as soon as *n* > sqrt(d).
- \* Learning to nontrivial accuracy requires  $n=\theta(d)$  samples

# GAUSSIAN DISTRIBUTION

Thm 2: For Gaussians in d dimensions, with fixed covariance, and unknown mean:

- Learning requires n = d.
- Amplification possible starting at n = sqrt(d).
- (n, n + n/sqrt(d))-amplification is possible (and optimal, to constant factors)

#### Algorithm:

- 1) Draw  $x_{n+1}...x_m$  using empirical mean u\* of input samples.
- 2) For each input sample  $x_i$  "decorrelate" it from  $u^*$ .
- 3) Return  $x_{n+1}...x_m$  along with "decorrelated" original samples.

Thm 3: If output  $\supset$  input samples, require  $n > d/\log d$  for nontrivial amp.

Intuitively, issue is new "samples" would be too correlated with originals:







# IS AMPLIFICATION USEFUL?



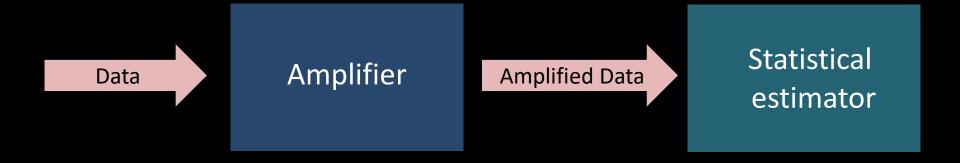
Amplification does not add new information, but could make original information more easily accessible.

# Can widely used statistical tools do better on amplified samples?



Amplification does not add new information, but could make original information more easily accessible.

# Can widely used statistical tools do better on amplified samples?

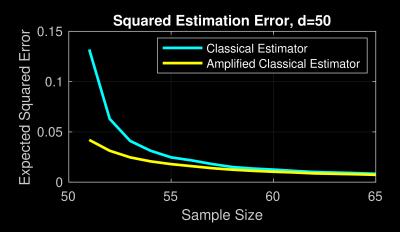


### Amplification Maybe Useful?

Given examples  $(x, y) \sim D$  estimate error of best linear model

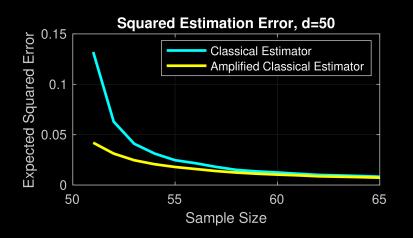
Standard unbiased estimator: Error of least-squares model, scaled down

$$x \sim Gaussian(d = 50), y = \theta^T x + Gaussian noise$$



Error of classical estimator vs. same estimator on (n, n + 2) amplified samples.

## **Amplification Maybe Useful?**



Data

Amplifier

Amplified Data

Statistical estimator

# **FUTURE DIRECTIONS**

# What property of a class of distributions determines threshold at which non-trivial amplification is possible?

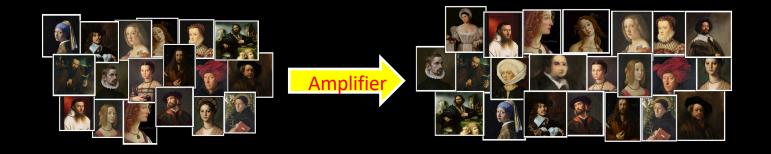
More general amplification schemes?

MORE powerful Verifier?

How much does Verifier need to know about n input samples to preclude amplification without learning? [How much do we need to know about a GAN's input, to evaluate its output?]

LESS powerful Verifier?

What if Verifier doesn't know D, only gets sample access?



## **THANK YOU!**