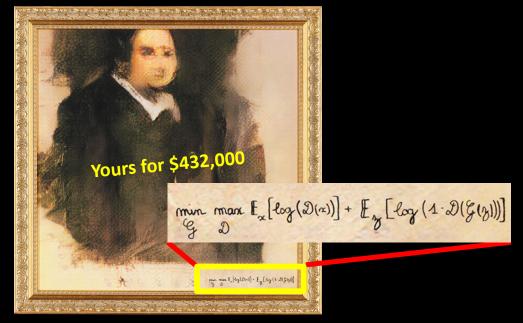
Increasing Dataset Size even when Learning is Impossible

Brian Axelrod

Shivam Garg

Vatsal Sharan

Greg Valiant

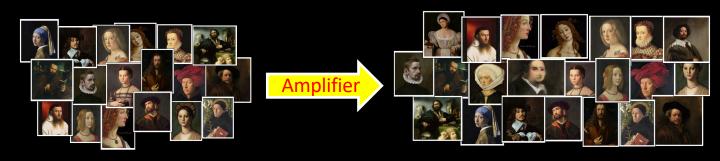


What does it mean that a GAN made this image? (Does it mean that GANs "know" the distribution of renaissance portraits?)

When can you make more data?

Could you generate new samples from a distribution, without even ``learning'' it?

New Problem: Sample Amplification



Input: n i.i.d. samples from D

Output: m > n "samples"

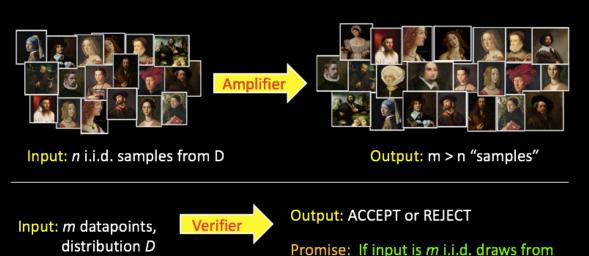
Input: *m* samples, distribution *D*

Output: ACCEPT or REJECT

Promise: If input is m i.i.d. draws from D, then w. prob > $\frac{3}{4}$, must ACCEPT.

Verifier: 1. Knows D 2. Is computationally unbounded 3. Does not know training set

Definition: A class of distributions C admits (n,m)-amplification, if there is an (n,m) Amplifer s.t. for all $D \in C$, any Verifier will ACCEPT with prob > 2/3.



Verifier: knows *D*, is computationally unbounded

D, then w. prob > ¾, must ACCEPT.

Definition: A class of distributions C admits (n,m)-amplification, if there is an (n,m) Amplifer s.t. for all $D \in C$, any Verifier will ACCEPT with prob > 2/3.

- Every class C admits (n,n)-amplification (why?)
- Verifier does not see Amplifier's n input samples. (Otherwise equivalent to learning)
- Up to constant factors, equivalent to asking whether Amplifier can output m samples, whose T.V. distance to m i.i.d. samples from D is small.

Definition: A class of distributions C admits (n,m)-amplification, if there is an (n,m) Amplifer s.t. for all $D \in C$, any Verifier will ACCEPT with prob > 2/3.

Connection to GANs:

Amplifier -> Generator, Verifier -> Discriminator? Not quite.. Similarities in how samples are used and evaluated.

RESULTS

Thm 1: Let C be class of discrete distributions supported on $\leq k$ elements.

(n, n + n/sqrt(k))-amplification is possible (and optimal, to constant factors)

- * Nontrivial amplification possible as soon as n > sqrt(k).
- * Learning to nontrivial accuracy requires $n=\theta(k)$ samples
- * Even with n >> k can never amplify by arbitrary amount.

Thm 2: Let C be class of Gaussians in d dimensions, with fixed covariance (e.g. "isotropic"), and **unknown** mean. (n, n + n/sqrt(d))-amplification is possible (and optimal, to constant factors)

- * Nontrivial amplification possible as soon as *n* > sqrt(d).
- * Learning to nontrivial accuracy requires $n=\theta(d)$ samples

GAUSSIAN DISTRIBUTION

Thm 2: For Gaussians in d dimensions, with fixed covariance, and unknown mean:

- Learning requires n = d.
- Amplification possible starting at n = sqrt(d).
- (n, n + n/sqrt(d))-amplification is possible (and optimal, to constant factors)

Algorithm:

- 1) Draw $x_{n+1}...x_m$ using empirical mean u* of input samples.
- 2) For each input sample x_i "decorrelate" it from u^* .
- 3) Return $x_{n+1}...x_m$ along with "decorrelated" original samples.

Thm 3: If output \supset input samples, require $n > d/\log d$ for nontrivial amp.

Intuitively, issue is new "samples" would be too correlated with originals:

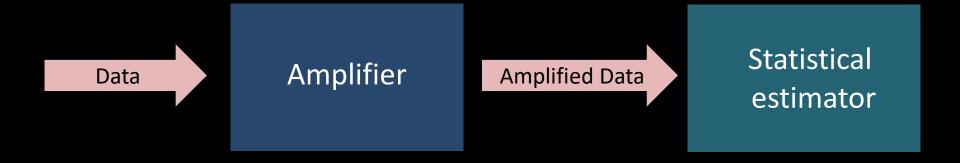
IS AMPLIFICATION USEFUL?

Amplification does not add new information, but could make original information more easily accessible.

Can widely used statistical tools do better on amplified samples?

Amplification does not add new information, but could make original information more easily accessible.

Can widely used statistical tools do better on amplified samples?

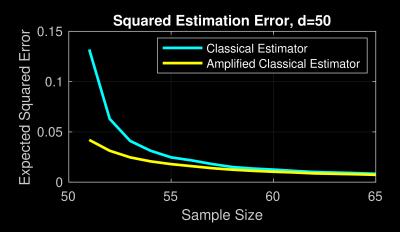


Amplification Maybe Useful?

Given examples $(x, y) \sim D$ estimate error of best linear model

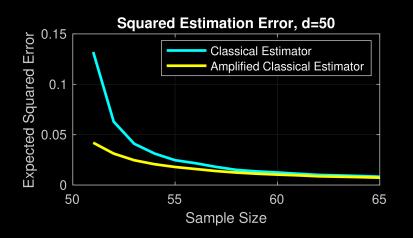
Standard unbiased estimator: Error of least-squares model, scaled down

$$x \sim Gaussian(d = 50), y = \theta^T x + Gaussian noise$$



Error of classical estimator vs. same estimator on (n, n + 2) amplified samples.

Amplification Maybe Useful?



Data

Amplifier

Amplified Data

Statistical estimator

FUTURE DIRECTIONS

What property of a class of distributions determines threshold at which non-trivial amplification is possible?

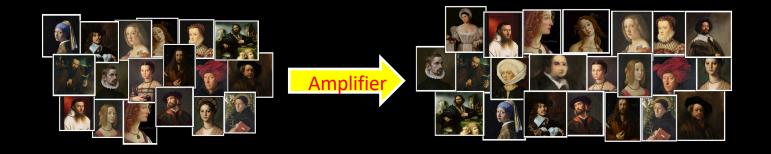
More general amplification schemes?

MORE powerful Verifier?

How much does Verifier need to know about n input samples to preclude amplification without learning? [How much do we need to know about a GAN's input, to evaluate its output?]

LESS powerful Verifier?

What if Verifier doesn't know D, only gets sample access?



THANK YOU!