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Decentralized Optimization

Decentralized Stochastic Learning involves multiple agents or
nodes that collect data, and want to learn an ML model
collaboratively.

Applications including federated learning, multi-agent robotics
systems, sensor networks, etc.

In many cases, communication links are asymmetric due to
failures and bottlenecks and communication is done over a
directed graph [Tsianos et al. 2012, Nedic et al. 2014, Assran
et al. 2020].
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This Talk

Link failure: Nodes communicate over a directed graph

High communication cost: Nodes communicate compressed
information Q(x)
Compression operator Q : Rd → Rd
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Introduction: Push-sum Algorithm

Decentralized optimization over directed graphs with exact
communication:


xi (t + 1) =

∑n
j=1 wij xj(t)− α(t)∇fi (zi (t))

yi (t + 1) =
∑n

j=1 wij yj(t)

zi (t + 1) = xi (t + 1)/yi (t + 1)

[Nedic et al. 2014] prove that for convex, Lipschitz objectives
and α(t) = O(1/

√
T )⇒ ‖f (z̃i (T ))− f ?‖ = O(1/

√
T ),

z̃i (T ) = 1
T

∑T
t=1 zi (t)

How can we incorporate quantized message exchanging for
this setting?
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Proposed Algorithm: Quantized Push-sum

We propose the quantized Push-sum algorithm for stochastic
optimization

qi (t) = Q (xi (t)− x̂i (t))

for all nodes k ∈ N out
i and j ∈ N in

i do
send qi (t) and yi (t) to k and receive qj (t) and yj (t) from j .
x̂j (t + 1) = x̂j (t) + qj (t)

end for
vi (t + 1) = xi (t)− x̂i (t + 1) +

∑
j∈N in

i
wij x̂j (t + 1)

yi (t + 1) =
∑

j∈N in
i

wij yj (t)

zi (t + 1) = vi (t + 1)/yi (t + 1)
xi (t + 1) = vi (t + 1)− α(t + 1)∇Fi (zi (t + 1))

x̂j(t) is stored in all out-neighbors of node j

x̂j(t)→ xj(t) therefore qj(t)→ 0 (Similar to [Koloskova et
al. 2018] )
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Assumptions

Assumptions on graph and connectivity

Strongly connected graph and Wij ≥ 0, Wii > 0, ∀i , j ∈ [n]

Note that this results in ‖W t − φ1′‖ ≤ Cλt , ∀t ≥ 1
where φ ∈ Rn, 0 < λ < 1

Assumptions on local objectives

Lipschitz Local Gradients,∥∥∥∇fi (y)−∇fi (x)
∥∥∥ ≤ L

∥∥∥y − x
∥∥∥, ∀x, y ∈ Rd

Bounded Stochastic Gradients,

Eζi∼Di

∥∥∥∇Fi (x, ζi )∥∥∥2 ≤ D2, ∀x ∈ Rd

Bounded Variance,

Eζi∼Di

∥∥∥∇Fi (x, ζi )−∇fi (x)
∥∥∥2 ≤ σ2, ∀x ∈ Rd
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Assumptions

Assumption on quantization function

The quantization function Q : Rd → Rd satisfies for all x ∈ Rd ,

EQ

[∥∥∥Q(x)− x
∥∥∥2] ≤ ω2 ‖x‖2 , (1)

where 0 ≤ ω < 1.
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Convergence Results (Convex objectives)

Define γ := ‖W − I‖2 and C (λ, γ) := 1√
6(1+ 6C2

(1−λ)2
)(1+γ2)

Theorem 1

Assume local objectives fi are convex for all i ∈ [n]. By choosing

ω ≤ C (λ, γ) and α =
√
n

8L
√
T

, for all T ≥ 1, it holds that,

E f

(
1

T

T∑
t=1

zi (t + 1)

)
− f ? = O

(
1√
nT

)

Time average of local parameters zi converges to the exact
solution!
The convergence rate is the same as the case of undirected
graphs with exact communication (e.g. [Yuan et al. 2016])
Error is proportional to 1/

√
n
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Convergence Results (Non-Convex objectives)

Theorem 2

Let ω ≤ C (λ, γ) and α =
√
n

L
√
T

. Then after sufficiently large

number of iterations, (T ≥ 4n), it holds that

1

T

T∑
t=1

E

∥∥∥∥∥∇f
(

1

n

n∑
i=1

xi (t)

)∥∥∥∥∥
2

= O
(

1√
nT

)

Average of local parameters xi (t) converges a stationary
point!

Again, the convergence rate is the same as the case of
undirected graphs with exact communication(e.g. [Lian et al.
2017])

Error is proportional to 1/
√
n
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Numerical Experiments

f (x) = 1
2nm

∑n
i=1

∑m
j=1

∥∥∥x− ζ ij ∥∥∥2 ,
Data-set size=100, mini-batch size =1, dimension= 256,
n=10.

0 2 4 6 8 10

105

10-1

100

101

5x speedup in communication time.
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Numerical Experiments

Neural network with one hidden layer with 10 hidden units

Mini-batch size = 10 (Left) & 100 (Right), n = 10

0 1 2 3 4 5 6

107

1.5

2

2.5

3

3.5

(a) MNIST dataset

0 0.5 1 1.5 2 2.5 3 3.5

108

0.95

1

1.1

1.2

1.3

(b) CIFAR-10 dataset

5x speed up in communication time.
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Conclusion

We proposed the quantized push-sum algorithm for
collaborative optimization.

The proposed algorithm converges with optimal convergence
rates w.r.t. vanilla push-sum protocol.

Interesting future directions: Communication-efficient
algorithms for collaborative optimization with “asynchrony” or
“periodic averaging”.
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