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Decentralized Optimization

m Decentralized Stochastic Learning involves multiple agents or
nodes that collect data, and want to learn an ML model
collaboratively.
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Decentralized Optimization

m Decentralized Stochastic Learning involves multiple agents or
nodes that collect data, and want to learn an ML model
collaboratively.

m Applications including federated learning, multi-agent robotics
systems, sensor networks, etc.

® In many cases, communication links are asymmetric due to
failures and bottlenecks and communication is done over a
directed graph [Tsianos et al. 2012, Nedic et al. 2014, Assran
et al. 2020].

4/30



This Talk

m Link failure: Nodes communicate over a directed graph

m High communication cost: Nodes communicate compressed
information Q(x)
Compression operator Q : RY — RY
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Introduction: Push-sum Algorithm

m Decentralized optimization over directed graphs with exact
communication:

X,'(t + 1) = 27:1 Wijj Xj(t) — Oé(t)Vf;' (Z,'(t))
yi(t+1) =357 wiy(t)
zi(t+1) =x(t+1)/yi(t+1)

6/30



Introduction: Push-sum Algorithm

m Decentralized optimization over directed graphs with exact
communication:

X,'(t + 1) = 27:1 Wijj Xj(t) — Oé(t)Vf;' (Z,'(t))
yi(t+1) =357 wiy(t)
zi(t+1) =x(t+1)/yi(t+1)

m [Nedic et al. 2014] prove that for convex, Lipschitz objectives
and a(t) = O(1/VT) = ||f(z(T)) - £l = O(1/V'T),
7(T) = + 2y zi(t)

7/30



Introduction: Push-sum Algorithm

m Decentralized optimization over directed graphs with exact
communication:

X,'(t + 1) = 27:1 Wijj Xj(t) — Oé(t)Vf;' (Z,'(t))
yi(t+1) =357 wiy(t)
zi(t+1) =x(t+1)/yi(t+1)

m [Nedic et al. 2014] prove that for convex, Lipschitz objectives
and a(t) = O(1/VT) = |If(z(T)) - £ = O(1/VT),
7(T) = + 2y zi(t)

m How can we incorporate quantized message exchanging for
this setting?
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Proposed Algorithm: Quantized Push-sum

m We propose the quantized Push-sum algorithm for stochastic
optimization

i(t) = Q (xi(t) — %i(1)) )

for all nodes k € NP and j € N/ do
send q;(t) and y;(t) to k and receive q;(t) and y;(t) from j.
%(e+1) = %i(1) + 4;(0)

end for

vi(t+1) = xi(t) = Xi(t + 1) + Eje/\/,-i” w;iRj(t +1)

yi(t+1) = ZjeN’jn w;iy;(t)

zi(t+1) =vi(t+1)/yi(t + 1)

xj(t+1) =vi(t+1) — a(t + 1)VFi(z(t + 1))
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Proposed Algorithm: Quantized Push-sum

m We propose the quantized Push-sum algorithm for stochastic
optimization

i(t) = Q (xi(t) — %i(1)) )

for all nodes k € NP and j € N/ do
send q;(t) and y;(t) to k and receive q;(t) and y;(t) from j.
%(e+1) = %i(1) + 4;(0)

end for

vi(t+1) = xi(t) = Xi(t + 1) + Eje/\/,."" w;iRj(t +1)

yi(t+1) = ZjeN’jn w;iy;(t)

zi(t+1) =vi(t+1)/yi(t + 1)

xj(t+1) =vi(t+1) — a(t + 1)VFi(z(t + 1))

m X;(t) is stored in all out-neighbors of node

m X;(t) — x;(t) therefore q;(t) — 0 (Similar to [Koloskova et
al. 2018] )
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Assumptions on graph and connectivity
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Assumptions on graph and connectivity

m Strongly connected graph and W; >0, W;; > 0, Vi, j € [n]
Note that this results in ||W! — ¢1'|| < CAY, Vit > 1
where p e R", 0 < A < 1
Assumptions on local objectives

m Lipschitz Local Gradients,

va;(y) - Vf,-(x)H < LHy — x|, vx,y € RY

m Bounded Stochastig Gradients,
Egi||VFi(x, )| < D2, vx e R

m Bounded Variance, )
EC:'ND:‘HVFi(xv C,) — Vﬁ(X)H < 02, Vx € R
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Assumption on quantization function

The quantization function Q : RY — RY satisfies for all x € RY,

Eo o0 - ] <o 12, 1)

where 0 < w < 1.
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Convergence Results (Convex objectives)

m Define v := ||[W —1I||2 and C(\,v) := L
o)

Assume local objectives f; are convex for all i € [n]. By choosing
w< C(\,y) and a = V/n , for all T > 1, it holds that,

8L\VT

Ef(%;:zi(t—i—l)) —f*:(9<\/i_T)
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Convergence Results (Convex objectives)

1

2
(16_C>\)2 )(1+72)

m Define v := ||W — |2 and C(A,7) =
\/e(1+

Assume local objectives f; are convex for all i € [n]. By choosing
w< C(\,y) and a = V/n , for all T > 1, it holds that,

8L\VT

Ef(%;:zi(t—i—l)) —f*:(9<\/i_T>

m Time average of local parameters z; converges to the exact
solution!

m The convergence rate is the same as the case of undirected
graphs with exact communication (e.g. [Yuan et al. 2016])

m Error is proportional to 1/+/n -



Convergence Results (Non-Convex objectives)

Let w < C(\,y) and o = V" Then after sufficiently large

LVT®
number of iterations, (T > 4n), it holds that
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Convergence Results (Non-Convex objectives)

Let w < C(\,y) and o = V" Then after sufficiently large

LVT®
number of iterations, (T > 4n), it holds that
2

%é@ w(%zn:x,-(t)) :O<\/i_r>

i=1

m Average of local parameters x;(t) converges a stationary
point!
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Convergence Results (Non-Convex objectives)

_ Vn -
Let w < C(\,y) and o = LT Then after sufficiently large

number of iterations, (T > 4n), it holds that

1 < 1<
t=1

i=1

2

-o(4)

m Average of local parameters x;(t) converges a stationary
point!

m Again, the convergence rate is the same as the case of

undirected graphs with exact communication(e.g. [Lian et al.
2017])
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Convergence Results (Non-Convex objectives)

_ Vn -
Let w < C(\,y) and o = LT Then after sufficiently large

number of iterations, (T > 4n), it holds that

1 < 1<
t=1

i=1

2

-o(4)

m Average of local parameters x;(t) converges a stationary
point!

m Again, the convergence rate is the same as the case of

undirected graphs with exact communication(e.g. [Lian et al.
2017])

m Error is proportional to 1/y/n
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Numerical Experiments

12
8 F(X) = 5t S S x - ¢
m Data-set size=100, mini-batch size =1, dimension= 256,
n=10.

9

—o—4-bit quantization

—o— No quantization

0 2 4 6 8 10
Communicated Bits %10

m 5x speedup in communication time.

27/30



Numerical Experiments

m Neural network with one hidden layer with 10 hidden units
m Mini-batch size = 10 (Left) & 100 (Right), n = 10

—o— No quantization
—o— 8-bit quantization

Loss

0 1 2 3 4 5

Communicated Bits

(2) MNIST dataset

Loss

—a—No quantization

—=—8-bit quantization

0.5 1 1.5 2 2.5 3 3.5

. . 10°
Communicated Bits .

(b) CIFAR-10 dataset

m bx speed up in communication time.
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Conclusion

m We proposed the quantized push-sum algorithm for
collaborative optimization.

m The proposed algorithm converges with optimal convergence
rates w.r.t. vanilla push-sum protocol.
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Conclusion

m We proposed the quantized push-sum algorithm for
collaborative optimization.

m The proposed algorithm converges with optimal convergence
rates w.r.t. vanilla push-sum protocol.

m Interesting future directions: Communication-efficient
algorithms for collaborative optimization with “asynchrony” or
“periodic averaging”.
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