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Machine Learning Becomes Mainstream

2

Personalized medicine Robotics

Finance Autonomous cars



Data is the Fuel for Machine Learning

Object detection performance in mAP@[.5,.95] on COCO minival [                   ]

Example: object detection
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training a single deep model for NLP (with NAS) 
[SGM’19]

Problem 1: Training on Large Data is Expensive

3.2M 11.4 days

5.3X the yearly energy consumption 
of the average American

5x a lifetime of a car CO2

Example:
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Problem 2: What We Care About is Underrepresented

Example: self driving data 

5%
1%

14%

80%
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How can we find the “right” data 
for efficient machine learning?
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Often reduces to minimizing a regularized empirical risk function

w* ∈ arg minw∈𝒲 f(w), f(w) = ∑
i∈V

fi(w) + r(w), fi(w) = l(w, (xi, yi))

Loss function associated with 
training example i ∈ V

Regularizer

• Convex : Linear regression, logistic regression, ridge regression, 
regularized support vector machines (SVM) 

f(w)

• Non-convex : Neural networksf(w)

Examples:

Setting: Training Machine Learning Models

Training data volume: {(xi, yi), i ∈ V}

Feature Label
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Incremental gradient methods are used to train on large data

• Therefore, they are slow to converge

• Consider every  as an unbiased estimate of∇fi( . )

wk
i = wk

i−1 − αk ∇fi(wi−1)
• Sequentially step along the gradient of functions  fi

∇f( . )=∑
i∈V

∇fi( . )

Setting: Training Machine Learning Models
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Problem: How to Find the "Right" Data for 
Machine Learning?

V={ } S*={ }

• If we can find , we get a speedup by only training on S* |V | / |S* | S*

• The most informative subset ,    s.t.   S* = arg maxS⊆VF(S) |S | ≤ k

• What is a good choice for F(S)?



1. How to chose an informative subset for training?
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Finding  is ChallengingS*

• Points close to decision boundary vs. a diverse subset?

2. Finding  must be fastS*
• Otherwise we don’t get any speedup

3. We also need to decide on the step-sizes

4. We need theoretical guarantees
• For the quality of the trained model 
• For convergence of incremental gradient methods on the subset
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Idea: select the smallest subset  and weights  that closely 
estimates the full gradient

S* γ

S* = arg minS⊆V,γj≥0 ∀j |S | , s.t. max
w∈𝒲

∥ ∑
i∈V

∇fi(w) − ∑
j∈S

γj ∇fj(w)∥ ≤ ϵ .

V={ } S*={ }
Gradients at w

Solution: for every ,  is the set of exemplars of all the 
data points in the gradient space

w ∈ 𝒲 S*

={V′ }

Full gradient Gradient of S

Training Data: {(xi, yi), i ∈ V} V′ = {∇fi(w), i ∈ V}

Our Approach: Learning from Coresets
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How can we find exemplars in big datasets?

• Exemplar clustering is submodular!

F(S*) = ∑
i∈V

min
j∈S*

∥∇fi(w) − ∇fj(w)∥ ≤ ϵ

However,  depends on !S* w
• We have to update  after every SGD updateS*

Slow! :(

Our Approach: Learning from Coresets

Submodularity is a natural diminishing returns property

∀ A ⊆ B and B ∌ x :      F(A ∪ {x}) - F(A) ≥ F(B ∪ {x}) - F(B)

A simple greedy algorithm can find exemplars  in large datasetsS*
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Solution: find upper-bounds 

Can we find a subset  that bounds the estimation error for 
all ?

S*
w∈𝒲

F(S*) = ∑
i∈V

min
j∈S*

∥∇fi(w) − ∇fj(w)∥ ≤ ϵ

Idea: consider worst-case approximation of the estimation 
error over the entire parameter space 𝒲

F(S*) = ∑
i∈V

min
j∈S*

∥∇fi(w) − ∇fj(w)∥ ≤ ∑
i∈V

min
j∈S*

max
w∈𝒲

∥∇fi(w) − ∇fj(w)∥ ≤ ϵ

: upper-bound on the gradient difference 
over the entire parameter space 

dij

𝒲

Our approach: Learning from Coresets

dij
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Solution: find upper-bounds 

How can we efficiently find upper-bounds ?dij

dij ≤ const. ∥xi − xj∥

               [KF’19]dij ≤ const. (∥∇z(L)
i

fi(w) − ∇z(L)
j

fj(w)∥)

Input to the last layer

Feature vector

• Convex : Linear/logistic/ridge regression, regularized SVMf(w)

• Non-convex : Neural networksf(w)

  can be found as a preprocessing stepS*

  is cheap to compute, but we have to update dij S*

Our approach: Learning from Coresets



Our Approach: CRAIG
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Idea: select a weighted subset that closely estimates the full gradient

• (2) weight every elements of  by the size of the corresponding clusterS*
• (3) apply weighted incremental gradient descent on S*

1 epoch

w=0.05

w=0.1

w=0.2

➤

w=0.3

➤
Loss functionGradients of data points i ∈ V

• (1) use greedy to find the set of exemplars  from dataset  S* V
Algorithm:



Our approach: CRAIG
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Weighted incremental gradient descent on the subset  of 
exemplars in the gradient space

S ⊆ V

Theorem: For a -strongly convex loss function, CRAIG with decaying 
step-size  converges to a  neighborhood of the 
optimal solution, with a rate of 

μ
Θ(1/kτ), τ < 1 2ϵ/μ

𝒪(1/kτ)

w=0.05

w=0.1

w=0.2w=0.3

We get up to |V|/|S| speedup!



Existing Techniques
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• Variance reduction techniques [JZ’13, DB’14, A’18]


• Choosing better step sizes [KB’14, DHS’11, Z’12]

Speeding up stochastic gradient methods

CRAIG is complementary to all the above methods

• Importance sampling [NSW’13, ZZ'14, KF’18]



Application of CRAIG to Logistic Regression

Training on subsets of size 10% of Covtype with 581K points
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Up to 6x faster than training on the full data, with the same accuracy
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Up to 7x faster than training on the full data, with the same accuracy

10%

30%
50%

70%

90%

10%

20%

30%
90%

SGD+
All data

Application of CRAIG to Logistic Regression

Training on subsets of various size of Ijcnn1 with 50K points
(Imbalanced)
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2x-3x faster than training on the full data, with better generalization

Application of CRAIG to Neural Networks

Training on MNIST with a 2-layer neural network with 50K points
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CRAIG is data-efficient

Application of CRAIG to Deep Networks

Training ResNet20 on subsets of various size from CIFAR10 with 50K points



Summary

• We developed the first rigorous method for data-
efficient training of general machine learning models


• Converges to the near optimal solution


• Similar convergence rate as Incremental gradient methods 


• Speeds up training by up to 7x for logistic regression and 
3x for deep neural networks
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Come to our poster for more details!


