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Introduction

1.1 Research Question

e e e e s e

x=(X1,...,X,)l ERP ~ F

y=(Y1,....Y,) L eRF ~ G

Hy:F =G versus H,:F #G.

1.2 Value of Research

]

Testing whether two samples come
from the same population is one of the
most  fundamental problems in
statistics and has applications in a wide
range of areas. For example, we can
check the consistency of the
distribution of training samples and
test samples
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1.3 Research Method

e L

We apply the idea of projections and develop a new projective ensemble
approach for testing equality of distributions.
This method has the following advantages:

1.

2.
3.
4

Simple closed-form, no tuning parameters,

Be computed in quadratic time,
Be insensitive to the dimension, consistent against all fixed alternatives,

No moment assumption, robust to the outliers.
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@ Some existing methods can be implemented in
quadratic time but have been reported to be
sensitive to heavy-tailed data,

@ Robust counterparts are computationally
Motivation challenging with a cubic time complexity.

So we want to improve the approach proposed by Kim et al. (2020), and propose a robust

test, meanwhile reduce the computational cost.
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1.4 Related literature

T e o ity

Normality assumption:

Mean vector; covariance matrices

examples

The Student’s t test;
Hotelling’s T?test;

Bai & Saranadasa (1996);
Li & Chen (2012);

Cai et al. (2014);

Cai & Liu (2016)

<disadva ntages

The first two moments are not
sufficient to characterize the
distribution

May be inconsistent when the
normality assumption violates



Introduction

nonparametric approaches:

Use a measure of difference between F, . ) -
and G. as the test statistic " Cramé-von Mises (CvM) test statistic
" (Anderson, 1962) and Anderson-

Darling statistic (Darling, 1957) :

Kolmogorov-Smirnov test statistic / (Fot
(Smirnov, 1939) m-+n

Vrm/(n + m)sup,eg | Fn(t) — Gr(t)]

} w {Hm+11(t)}dan n( )
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Advantages |

When p =1,

« Consistent against any fixed alternatives,
distribution free under the null,

« No moment conditions are required,

 Free of tuning parameters,

Dis-
advantages

B e B e

 Difficult to generalize to multivariate
cases (Kim et al., 2020).

 Suffer from significant power loss when p
Increases.
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graph-based tests J

* k minimum spanning tree graphs; « Maximum mean discrepancy (MMD)
 k nearest neighbor graphs. test statistic based on RKHS;
« Energy statistic (be a special case of
disadvantages the MMD).

 Inconsistent
» Rely on selecting tuning parameters
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Kim et al. (2020)

f (Fa(t) — Ga(t)dHp(t)dN(B),

e e e e e e e e e

Where:
F,()=P(f'x<0),G,()=P(By<1),

H (1) =1F, (1) +(1-1)G (1) ,

~lim T=m/(m+n)
min(m,n)—oo

1)

Hp(t) =t

energy statistic
(Baringhaus& Franz, 2004)

A(p) is the uniform probability measure on the p-dimensional unit sphere

SP1E(BeRr: || = 1)
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Table: Comparison of Projection-averaging approach and energy statistic

_ Projection-averaging approach Energy statistic

* nonnegative and equal to zero ifand only iIf F = G
» have a simple closed-form expression

 free of tuning parameters
Advantages

robust to heavy-tailed

distributions or outliers quadratic computations

energy distance is only well-
BIEELVERIEL[SE cubic computations defined under the moment
condition (finite first moment)
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/ {Fs(t) (t)}?dH(B,t) = (2)

Projection-averaging approach focused on the case that f7x and BTy have continuous distribution
functions for all B € SP~1, whereas we are targeting on a more general case and we do not need
such continuous distribution assumption.

These observations motivate us to carefully choose other weight functions such that

1. The integration in (2) equals zero if and only if x and y are equally distributed;

2. The choice of H(f, t) does not depend on unknown functions which are difficult to estimate;

3. The integration in (2) has a closed-form expression, and is finite without any moment
conditions.

We apply the idea of projections and develop a new projective ensemble approach for testing
equality of distributions.



Projective Ensemble Test

2.1 Motivation

o o o o LA s

The integration in Eq.(2) can be rewritten as

//Fﬁ VdH (8B, 1) —2//% )Ga(t)dH (B, t) + /Gﬁ VdH (B3, t)

_ //5{1,3 x1 < t,8%%xs < 1)} dH(B,1)

—Q/fE{Iﬁ x; < t,8%y, < t)}dH(B,1t)

+/ E{I(B"y1 <t.B"y2 <t)}dH(B,1),

In order to obtain a closed-form expression,

we need to evaluate the three integrations in

the above display. We take the first integration for example. By adopting Fubini’s
theorem, it suffices to find H(B,t) such that the following integration

/ I(B'x1 <t,B'xe < t)dH(B,1)

has a closed form for given x;and x,
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Lemma 1. (Gupta, 1963) Let (Zy, Z3)" be bivariate normal
with mean Q. The correlation between Z and Zs is p, then

1 1
P(Z1>0,Z,>0) = 1 + — arcsin(p).

27

By treating x, and x, as constants, (5,t)T as a p + 1 dimensional multivariate
joint normal random vector with cumulative distribution function H(f,t), the
integration can be expressed as

// I(B"x) <t,B"xy < t)dH(S,1)

X1, X?)

= - + — arcsin :
4 27 V1+xTx/1 4 x7%0

= Pr(t—ﬁTxl >0,t—3"%x2>0
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Consequently, the integration in (2) can be expressed in a closed form, which is shown in the
following Theorem.

Theorem 1. Suppose x = (Xi1,...,X,)" € RP and ’ where 11, 1> and T} are defined as
y = (Y1,..., Yp)T € R? are two p-dimensional random
vectors whose distribution functions are F' and G, respec- T, % Earcsin 1+ x7x2
tively. x1,Xo and y1,y2 are two independent copies of x ! \/1 + x1x1 \/1 + x4x2
and y, respectively. Let H((3,t) be the cumulative distri- -

. . . . .. .. d 1+ xTy2
bution function of a p + 1 dimensional multivariate joint T, ¥ Earcsin 1 1
normal random vector with mean 0 and covariance 1, ;. V1+x[x1y/1+ylys
Then def : 1+ yiy2

13 = Farcsin \/1 = \/1 = .
- -
T = o [ [(Fa) - Galt) (8.1 vy
— T, — 2T, + T 3) In addition, T' is nonnegative and equals zero if and only if

| F=3G.
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2.2 Asymptotic properties

R T R R A

At the sample level, we estimate T,, T,, and T; by

1 & 1+ xIx;
= —QZZarcsin t J \
m i=1 j=1 \/ 1 + X:{Xi.\ / 1 + X;Xj

- e 1 . 1 Y
T, £ Z Z arcsin XY

i=1 j=1 \/1+X.{Xg'1fl+y;yj

T, & 7ZZarcsin TYiYy

i=1 j=1 V14 .Y;;FYM/ 1+ Y}Yj

Complexity: 0{(m + n)?}
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asymptotic properties of the test statistic under the null hypothesis

Theorem 2. Under the null hypothesis, that is, F' = G, as No
min(m, n) — oo, ;T converges in distribution to moment

condition

on [ [ (c(a.0y2am 8.

where ((3,t) is a gaussian random process with mean zero

and covariance function, cov {((3,1), (e, s)}, is given by NO :
continuity
P(B'x<ta'x<s)—P(B'x<t)P(a'x<s). 4 assumption

mn/(m+mn)? — 7(1 — 7) as min(m, n) — oo. l (m + n) consistent
7 is the limit value of m/(m + n),
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Under the global alternative, F # G and the difference between the two distribution
functions does not vary with the sample size.

Theorem 3. Under the global alternative hypothesis, as ’

~ 1
min(m,n) — oo, (m + n)Y/2(T — T) converges in distri- E{ arcsin Ntx = )
bution to Vit XTX\/I XX

(
N {0? A(1 = 7)var(Z,) + 4rvar(Zs) } resin ( 1+x'y ) ' x}(S )
(

r1—7) \/1+xTx\/1+yy

where T € (0, 1) is the limit value of m/(m + n), Z1 and E{ arcsin 7
Zo are defined in (S.3.1) and (S.3.2) in the Supplementary
Material, respectively.

1+xTx\/1—|—y y
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Under the local alternative, F # G but the difference
between the two distribution functions diminishes
as the sample size increases. We consider a
sequence of local alternatives as follows:

Hy :P(B"x <t) =P(B'y < t) + (m+n)"24(B,1),

where ((3,t) is a function depending only on 3 and t such
that [[ ¢%(3,t)dH (B, t) exists.

Theorem 4. Under the local alternative hypothesis, as

min(m,n) — 0o, —2“2-T converges in distribution to
m-+n

- /201 _ \1/2 2
2 /] (C(B,1) + 721 = ) 20(8,1))dH (B 1),

where T is the limit value of m/(m + n), ((B,1) is a gaus-
sian random process defined in Theorem 2.

That 1s, as long as the difference 1s larger than
O {(m +n)~/2}, it can be consistently detected by our
proposed test with probability tending to one.
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1. Let{z1,2Z2,- -, Zmin} = {X1, s Xm, Y1, ¥n} Theorem 5. As min(m,n) — oo,
denote the pooled samples. Randomly permute the
pooled samples to obtain {z7, 23, ..., Zp, ., |- sup |P {mn/(m - n)’f* <t | Xiveo X, Vi, -- ,yn}
>0
2. Select the first m observations from the pooled sam- .
! ! . _P(T% < t)‘
ples as {x},...,x} }, and the rest observations as o
{vi,....yn}

converges in probability to 0, where T is defined as

3. Based on the two randomly permuted samples . . )
{x},...,x% )} and {y?%,...,y"}, calculate the test s- 15, = 2’”/ {C7(B, 1)} dH (B, )

tatistic to obtain 71'*.
R and (*(3,t) is a gaussian random process with mean zero
4. Repeat steps 1 to 3 for B times to obtain 7", b = and covariance function, cov {C*(3,t), (" (a, s)}, given by

1,2,..., B. The associated p-value is given b
P g g (1-7) {P (ﬁry <ta'y < S) —P(B"y <t)P(a’y < 3)}

B
B! Z 1 (f* > f) +7 {P (ﬁrx <t,a'x < s) —P(B'x < t)P(a’x < 5)} G
b — ]
b=1
where I(-) is an indicator function. Reject the nul-

1 hypothesis if the p-value is smaller than the given
significance level.



Numerical Studies

We generate the samples {x;,x; € RP.i = 1,...,n,}, {y;,yi € RP,i = 1,...,n,}, and {z;,2; €
R?,i=1,...,n,} independently from tq(p.1,,021,), ta(pyly,021,), and t4(p.1p,021,), respectively.

MIZO:! Oy
py =1, oy
p, =1, 0,

1 Compare x and y to inspect location shift
1, Compare y and z to inspect scale difference
2. Compare x and z to inspect both location shift and scale difference

Throughout the experiment, we set the significance level as 0.05. We repeat each experiment 1000
times and determine the critical values with 1000 permutations.

1.

2.
3.
4

Normal distributions, n,, = n,, = n, = 20,p = 10;

Cauchy distributions, n,, = n,, =n, = 20,p = 10;

Cauchy distributions, n,, = 20, n,,= 20,n, = 40,p = 100;
Normal distributions, n, = n,, = {20,50,100}, p = 10.
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We compare the performance of the projection ensemble based test ( “PE” ) with other
competing nonparametric tests.

the projection-averaging based Cramé&-von Mises test (Kim et al., 2020, “CvM” ),
the k nearest neighbor test (Henze, 1988, “NN” ),

the modified k nearest neighbor test (Mondal et al., 2015, “MGB” ),

the energy statistic based test (Székely & Rizzo, 2004, “Energy” ),

the inter-point distance test (Biswas & Ghosh, 2014, “BG” ),

the cross-match test (Rosenbaum, 2005, “CM” ),

ball divergence test (Pan et al., 2018, “Ball” ).

N o ok N -



Numerical Studies

Case 1: Normal distributions, n, = n, =n, = 20,p = 10;

y =

Table 1: The empirical powers for different methods when all the samples are generated from multi-
variate normal distributions at significance level a = 0.05.

PE CvM NN MGB ENERGY BG CM BALL

LocATION 1.000 1.000 0.999 0.996 1.000 1.000 | 0.994 |1.000
SCALE 0.713 0.880 0.723 1.000 0.989 1.000 | 0.169 |1.000
LOCATION-SCALE  0.966 1.000 0.997 1.000 1.000 1.000 | 0.765 |1.000

The cross-match test is not efficient in detecting the scale difference may be mainly because it relies
on some tuning parameters.
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Case 2: Cauchy distributions, n, = n,, = n, = 20,p = 10;

Case 3: Cauchy distributions, n, = 20, n,,= 20,n, = 40,p = 100;

Table 2: The empirical powers for different methods when all the samples are generated from Cauchy
distributions at significance level o = 0.05.

PE CvM NN MGB | ENERCGY BG CM BALL

LOCATION 1.000 1.000 0.139 0.056 0.043 0.048 1.000 0.036
SCALE 0.550 0.555 0.311 0.601 0.302 0.217 0.108 0.577
LoCcATION-SCALE  0.998 1.000 0.335 0.582 0.289 0.215 0.872 0.581

Table 3: The empirical powers for different methods when all the samples are generated from Cauchy
distributions and the sample sizes are imbalanced at significance level a = 0.05.

PE CvM NN MGB Enercy BG CM  BALL

LOCATION 0.999 0.999| 0.084 [0.040 0.055 0.052  0.996 0.037
SCALE 0.397 0.477) 0.000 |0.737 0.259 0.026 0.045 0.520
LOCATION-SCALE 1.000 1.000| 0.000 |0.857 0.372 0.089 0.943 0.728
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Case 4: Normal distributions, n,, = n,, = {20,50,100},p = 10.

Table 4: The average running time (in milliseconds) for different methods.

n PE CvM NN MGB ENErcY BG CM BALL

20 0.16 6.11 1.00  0.98 0.11 0.11  3.69 4.49
50 0.27 | 37.19 | 3.17  2.72 0.29 0.30 6.28 20.22
100 0.63 | 213.69 | 7.46  7.36 1.17 1.06 16.20 81.56

heavy

computations
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Summary
e

« our method is comparable with the projection-averaging based Cramé&-von
Mises test in terms of power performance,

* Dbe superior to the other tests across almost all the cases, especially in the
presence of the heavy-tailed distributions.

* more computationally efficient than the projection-averaging based Cramé&-
von Mises test .
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Dataset

i

UCI machine learning repository: Daily Demand

Forecasting Orders Data Set
Question

B

Inspect whether the demand on Friday is
significantly different from other weekdays.

Features

[ [
A p p I I C at I O n e

Non urgent order (X;),

Urgent order (X,),

Three order types (X3, X4, Xc),

Fiscal sector orders (Xg),

Orders from the traffic controller sector(X-),
Three kinds of banking orders (Xg, X9, X10),
Total orders (X14).
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Table 5. The empirical p-values for different methods for the daily
demand forecasting orders data set.

PE CvM NN MGB
P-VALUE 0.008 0.004 0.249 0.180

ENERGY BG CM BALL
P-VALUE 0.011 0.210 0.554 0.112

Permutation 1000 times

Cauchy combination test statistic:

T = % ; tan {(0.5 — p;) 7}

p=1/2 —r 'arctan(T).

The corresponding p-value is
0.0164

the demand on Friday is
significantly different from other
weekdays
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Conclusion

€ \We apply the idea of projections and propose a robust test for the
multivariate two-sample problem.

@ It is demonstrated that with a suitable choice of the ensemble
approach, we can obtain a test, which is superior to most existing
tests, especially in the presence of the heavy-tailed distributions.

€ Moreover, it is comparable with the projection-averaging based
Cramé&-von Mises test in terms of power performance, but much
more efficient in terms of computation.
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Discussion

It’s necessary to continue reducing the computational cost:

@ In univariate cases, we can adopt AVL tree-type implementation to develop an
efficient algorithm with complexity 0{(m + n)log(m + n)}

€ In multivariate cases, we can approximate the test statistic with random
projections, whose computational cost can be reduced to O{(m + n)Klog(m +

n)} and memory cost O{max(m + n, K)}, where K is the number of random
projections.
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