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● AAE architecture for hypernetwork

● PointNet as an Encoder

● Arbitrary prior on latent space

● Decoder produces weights for

target network based on latent embedding

● Target network moves points from the uniform distribution 

on 3D ball to the 3D object

HyperCloud



● Use precomputed mesh

instead of a point cloud

● Feeding vertices to 

the target network produces 

high-quality meshes

● No need for second mesh rendering

Easily extendible to meshes



Experimental results

Figure: 3D point clouds and their mesh representations produced by HyperCloud



Experimental results
Table: Quality of representations by sampling from sphere (JSD ↓, MMD ↓, COV↑)



Experimental results

Figure: Interpolations between two 3D point clouds and their mesh representations



Conclusion
● We present a novel method for generating 3D point clouds

● Our approach is able to work not only on point clouds, but also on 3D meshes

● We leverage the hypernetworks to obtain simple architecture and fast 

end-to-end training

● Our model is able to generate shapes consisting of an arbitrary number of points 

or vertices



● Objects represented as 

sets of real-valued points

● Unstructured

● Unordered - K! possible arrangements of K points

● One of the most common dataset is ShapeNet

○ 57k samples, 55 classes

Point Clouds



● Is training all parameters in (very) deep neural networks 

necessary?

● Instead train a smaller NN (hypernetwork) that generates 

weights for the (target) network
○ HyperNetworks (Ha et al. ICLR 2016)

○ Hypernetwork functional image representation (Klocek et al. ICANN 2019)

Related work: Hypernetworks 



● Adversarial Autoencoders adapted to point cloud data
○ Adversarial Autoencoders (Makhzani et al., ICLR 2016) 
○ 3d Adversarial Autoencoders (Zamorski et al., CVIU 2019)

● Using PointNet as an Encoder
○ PointNet (Qi et al., CVPR 2017)

● Able to use an arbitrary prior

● Only generates a fixed number of points

Related work: 3d Adversarial Autoencoders 
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Experimental results

Figure: 3D point clouds and their mesh representations produced by HyperCloud



Evaluation

● Jensen-Shannon Divergence
○ The distance between two distributions

● Coverage
○ A portion of the reference data distribution that is covered by generated samples

● Minimum Matching Distance
○ Similarity of generated samples with respect to the reference set

● 1-Nearest Neighbour Accuracy
○ Are sample and reference test sets indistinguishable to simple classifier?



Experimental results
Table: Generation results (JSD ↓, MMD ↓, COV↑ , 1-NNA)

Able to use EMD loss

Produce an arbitrary 
number of points



Experimental results
Table: Quality of representations by sampling from sphere (JSD ↓, MMD ↓, COV↑)



● Use point cloud X as an input to the encoder E to obtain encoding z
● Based on z, we generate weights θ for the target network T 

● Sample same number of points 

from the 3D prior as in X
● To obtain reconstruction X' pass sampled 

points through parameterized target network Tθ

● Calculate the loss consisting of reconstruction error

and latent space regularization

L(X; E, D, P) = Err(X, D(E(X))) + Reg(E(X), P)

Training details



Experimental results

Figure: Interpolations between two 3D point clouds and their mesh representations



More experimental results

Figure: Interpolation between two points sampled from the 3D ball prior
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