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Easily extendible to meshes
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Experimental results

Figure: 3D point clouds and their mesh representations produced by HyperCloud



Experimental results

Table: Quality of representations by sampling from sphere (JSD |, MMD |, COV1)

MMD COV
Class Model Sphere R JSD
CD EMD CD EMD
Airplane  PointFlow 2.795  22.26 0.49 6.65  44.69 20.74

3.136  26.46  0.60 6.89 39.50 19.01

3.368  29.65 0.68 6.84 40.49 16.79

HyperCloud 1.000 9.51 0.45 5.29 30.60 28.88

Chair PointFlow 2.795 19.28 428 13.38 36.85 20.84
3.136  22.52 4.89 14.47 32.47 17.22

3.368  24.68 5.36 14.97 31.41 17.06

HyperCloud 1.000 4.32 2.81 9.32 40.33 40.63

Car PointFlow 2.795 16.59 1.60 8.00 20.17 17.04
3.136  20.21 1.75 7.80 21.59 17:32

3.368  24.10 1.96 8.35 18.75 17.04

HyperCloud 1.000  5.20 1.11 6.54 37.21 28.40
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Figure: Interpolations between two 3D point clouds and their mesh representations



Conclusion

e \We present a novel method for generating 3D point clouds

e Qurapproachisable to work not only on point clouds, but also on 3D meshes

e \We leverage the hypernetworks to obtain simple architecture and fast
end-to-end training

e (Our modelis able to generate shapes consisting of an arbitrary number of points

or vertices



Point Clouds

e Objectsrepresentedas
sets of real-valued points

e Unstructured

L1 Y1 =1
L2 Y2 <2

TK YK <K

e Unordered - K! possible arrangements of K points

e One of the most common dataset is ShapeNet

o b7k samples, bb classes
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Related work: Hypernetworks

e Istraining all parametersin(very)deep neural networks

necessary?

e Instead train a smaller NN (hypernetwork) that generates

weights for the (target) network

o HyperNetworks(Ha et al. ICLR 2016)

o Hypernetwork functional image representation (Klocek et al. ICANN 2019)



Related work: 3d Adversarial Autoencoders

e Adversarial Autoencoders adapted to point cloud data

o Adversarial Autoencoders(Makhzani et al., ICLR 2016)
o 3d Adversarial Autoencoders(Zamorski et al., CVIU 2019)

e Using PointNet asan Encoder  anmmmee

of point of points
S i)

o PointNet(Qi et al., CVPR 2017)

e Able touse an arbitrary prior

e Only generates a fixed number of points
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Experimental results

Figure: 3D point clouds and their mesh representations produced by HyperCloud



Evaluation

e Jensen-Shannon Divergence
o The distance between two distributions
e (overage
o Aportion of the reference data distribution that is covered by generated samples
e Minimum Matching Distance
o Similarity of generated samples with respect to the reference set
e 1-Nearest Neighbour Accuracy

o Aresample and reference test sets indistinguishable to simple classifier?



Experimental results

Table: Generation results(JSD |, MMD |, COV1, 1-NNA)

Class Model JSD MMD Ccov 1-NNA
CD EMD CD EMD CD EMD
r-GAN 744 0.261 547 4272 18.02 93.58  99.51

I-GAN (CD) 462 0239 427 4321 21.23 86.30 97.28
I-GAN (EMD) 3.61 0.269 3.29 47.90 50.62 87.65 85.68
Airplane  PC-GAN 463 0287 357 36.46 4094 9435 92.32
PointFlow 4.92 0.217 3.24 4691 4840 75.68 75.06
HyperCloud 484 0266 328 39.75 43.70 93.80 88.95
Training set 6.61 0226 3.08 4272 49.14 70.62 67.53
r-GAN 11.5 2.57 12.8  33.99 997 T1.75  99.47
I-GAN (CD) 4.59 246 891 4139 2568 64.43  85.27
I-GAN (EMD) 2.27 2.61 7.85 40.79 41.69 64.73  65.56
Chair PC-GAN 3.90 2.75 820 36.50 38.98 76.03 78.37
PointFlow 1.74  2.42 787 46.83 46.98 60.88 59.89
HyperCloud 2.73 2.56 7.84 4154 46.67 6820 68.80
Training set 1.50 1.92 738 57.25 5544 59.67  58.46
r-GAN 12.8 1.27 874 15.06 9.38  97.87  99.86
I-GAN (CD) 443 1.55  6.25 38.64 1847 63.07 88.07
I-GAN (EMD) 221 148 543 3920 39.77 69.74  68.32
Car PC-GAN 5.85 1.12 583 2356 30.29 92.19 90.87
PointFlow 0.87 091 5.22 44.03 46.59 60.65 62.36
HyperCloud 3.09 1.07 538 40.05 40.05 84.65 77.27
Train set 0.86 1.03 533 4830 5142 57.39 53.27

‘ Able to use EMD loss

Q Produce an arbitrary
number of points




Experimental results

Table: Quality of representations by sampling from sphere (JSD |, MMD |, COV1)
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Training details

e Use point cloud X as an input to the encoder E to obtain encoding z

Uniform

e Based on z, we generate weights 6 for the target network T’ aistribution &

on 3D ball /3

e Sample same number of points

JEEETETS

from the 3D prior asin X Ed D Dd
e To obtain reconstruction X' pass sampled ’ |-
points through parameterized target network 7', | Mo |

e (Calculate the loss consisting of reconstruction error

and latent space regularization
L(X; E, D, P) = Err(X, D(E(X))) + Reg(E(X), P)
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Figure: Interpolations between two 3D point clouds and their mesh representations



More experimental results

Figure: Interpolation between two points sampled from the 3D ball prior



Conclusion

e \We present a novel method for generating 3D point clouds

e Qurapproachisable to work not only on point clouds, but also on 3D meshes

e \We leverage the hypernetworks to obtain simple architecture and fast
end-to-end training

e (Our modelis able to generate shapes consisting of an arbitrary number of points

or vertices
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